Robust Control Toolbox ${ }^{\text {TM }}$

Reference

Gary Balas
Richard Chiang
Andy Packard
Michael Safonov

MATLAB $^{\circ}$

How to Contact MathWorks

Latest news:
Sales and services:
User community:
Technical support:
Phone:

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098
Robust Control Toolbox ${ }^{\text {TM }}$ Reference
© COPYRIGHT 2005-2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014 Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks. com/patents for more information.

Revision History

September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020

First printing
Online only Online only
Online only Online only

New for Version 3.0.2 (Release 14SP3)
Revised for Version 3.1 (Release 2006a) Revised for Version 3.1.1 (Release 2006b)
Revised for Version 3.2 (Release 2007a)
Revised for Version 3.3 (Release 2007b)
Revised for Version 3.3.1 (Release 2008a)
Revised for Version 3.3.2 (Release 2008b)
Revised for Version 3.3.3 (Release 2009a)
Revised for Version 3.4 (Release 2009b)
Revised for Version 3.4.1 (Release 2010a)
Revised for Version 3.5 (Release 2010b)
Revised for Version 3.6 (Release 2011a)
Revised for Version 4.0 (Release 2011b)
Revised for Version 4.1 (Release 2012a)
Revised for Version 4.2 (Release 2012b)
Revised for Version 4.3 (Release 2013a)
Revised for Version 5.0 (Release 2013b)
Revised for Version 5.1 (Release 2014a)
Revised for Version 5.2 (Release 2014b)
Revised for Version 5.3 (Release 2015a)
Revised for Version 6.0 (Release 2015b)
Revised for Version 6.1 (Release 2016a)
Revised for Version 6.2 (Release 2016b)
Revised for Version 6.3 (Release 2017a)
Revised for Version 6.4 (Release 2017b)
Revised for Version 6.4.1 (Release 2018a)
Revised for Version 6.5 (Release 2018b)
Revised for Version 6.6 (Release 2019a)
Revised for Version 6.7 (Release 2019b)
Revised for Version 6.8 (Release 2020a)

Functions
1

Blocks
2

Functions

actual2normalized

Transform actual values to normalized values

Syntax

NV = actual2normalized(uElement,AV)
[NV,ndist] = actual2normalized(uElement,AV)

Description

NV = actual2normalized(uElement, AV) transforms the values AV of the uncertain element uElement into normalized values NV. If AV is the nominal value of uElement, NV is 0 . Otherwise, AV values inside the uncertainty range of uElement map to the unit ball \||NV||<=1, and values outside the uncertainty range map to $\|N V\|>1$. The argument $A V$ can contain a single value or an array of values. NV has the same dimensions as AV.
[NV,ndist] = actual2normalized(uElement,AV) also returns the normalized distance ndist between the values AV and the nominal value of uElement. This distance is the norm of NV.
Therefore, ndist <= 1 for values inside the uncertainty range of uElement, and ndist > 1 for values outside the range. If AV is an array of values, then ndist is an array of normalized distances.

The robustness margins computed byrobstab and robgain serve as bounds for the normalized distances in ndist. For example, if an uncertain system has a stability margin of 1.4, this system is stable for all uncertain element values whose normalized distance from the nominal is less than 1.4.

Examples

Uncertain Real Parameter with Symmetric Range

For uncertain real parameters whose range is symmetric about their nominal value, the normalized distance is intuitive, scaling linearly with the numerical difference from the uncertain real parameter's nominal value.

Create uncertain real parameters with a range that is symmetric about the nominal value, where each end point is 1 unit from the nominal. Points that lie inside the range are less than 1 unit from the nominal, while points that lie outside the range are greater than 1 unit from the nominal.

```
a = ureal('a',3,'range',[1 5]);
NV = actual2normalized(a,[1 3 5])
NV = 1×3
    -1.0000 0 1.0000
NV = actual2normalized(a,[2 4])
NV = 1\times2
```

```
NV = actual2normalized(a,[0 6])
NV = 1\times2
\[
-1.5000 \quad 1.5000
\]
```

Plot the normalized values and normalized distance for several values.
values = linspace(-3,9,250);
[nv, ndist] = actual2normalized(a, values);
plot(values,nv,'r.', values,ndist,'b-')

Uncertain Real Parameter with Nonsymmetric Range

Create a nonsymmetric parameter. The end points are 1 normalized unit from nominal, and the nominal is 0 normalized units from nominal. Moreover, points inside the range are less than 1 unit from nominal, and points outside the range are greater than 1 unit from nominal. However, the relationship between the normalized distance and numerical difference is nonlinear.
au = ureal('ua', 4,'range',[15]);
NV = actual2normalized(au,[145])

```
NV = 1\times3
    -1 0 1
NV = actual2normalized(au,[2 4.5])
NV = 1\times2
    -0.8000 0.4000
NV = actual2normalized(au,[0 6])
NV = 1\times2
\[
-1.1429 \quad 4.0000
\]
```

Graph the relationship between actual and normalized values. The relationship is very nonlinear.

```
AV = linspace(-5,6,250);
NV = actual2normalized(au,AV);
plot(NV,AV,0,au.NominalValue,'ro',-1,au.Range(1),'bo',1,au.Range(2),'bo')
grid, xlabel('Normalized Values'), ylabel('Actual Values')
```


The red circle shows the nominal value (normalized value $=0$). The blue circles show the values at the edges of the uncertainty range (normalized values $=-1,1$).

Algorithms

For details on the normalize distance, see "Normalizing Functions for Uncertain Elements".

See Also

getLimits | normalized2actual| robgain| robstab|uscale
Introduced before R2006a

aff2pol

Convert affine parameter-dependent models to polytopic models

Syntax

polsys = aff2pol(affsys)

Description

aff2pol derives a polytopic representation polsys of the affine parameter-dependent system
$E(p) \dot{\chi}=A(p) x+B(p) u$
$y=C(p) x+D(p) u$
where $p=\left(p_{1}, \ldots, p_{\mathrm{n}}\right)$ is a vector of uncertain or time-varying real parameters taking values in a box or a polytope. The description affsys of this system should be specified with psys.

The vertex systems of pol sys are the instances of "Equation 1-1" and "Equation 1-2" at the vertices $p_{\text {ex }}$ of the parameter range, i.e., the SYSTEM matrices

$$
\left(\begin{array}{cc}
A\left(p_{e x}\right)+j E\left(p_{e x}\right) & B\left(p_{e x}\right) \\
C\left(p_{e x}\right) & D\left(p_{e x}\right)
\end{array}\right)
$$

for all corners $p_{\text {ex }}$ of the parameter box or all vertices $p_{\text {ex }}$ of the polytope of parameter values.

See Also

psys | pvec|uss

Introduced before R2006a

augw

Plant augmentation for weighted mixed-sensitivity H_{∞} and H_{2} loop-shaping design

Syntax

P = augw(G,W1,W2,W3)

Description

$\mathrm{P}=\operatorname{augw}(\mathrm{G}, \mathrm{W} 1, \mathrm{~W} 2, \mathrm{~W} 3)$ computes a state-space model of an augmented LTI plant $P(s)$ with the weighting functions $W_{1}(s), W_{2}(s)$, and $W_{3}(s)$ penalizing the error signal, control signal, and output signal, respectively. P is the augmented plant of the following diagram.

Augmented Plant P

This control structure is used in mixed H_{∞} synthesis, which lets you design an H_{∞} controller by simultaneously shaping the frequency responses for tracking and disturbance rejection, noise reduction and robustness, and controller effort. For more information, see "Mixed-Sensitivity Loop Shaping".

Examples

Create Augmented Plant for H-Infinity Synthesis

Suppose you want to synthesize a stabilizing robust controller for the system of the following diagram. The controller must also reject disturbances injected at the plant output.

The plant, G , is an unstable first-order system.
$\mathrm{G}=\mathrm{tf}\left(1,\left[\begin{array}{ll}1 & -1\end{array}\right)\right.$;
To set up this problem for hinfsyn, insert a weighting function W1 that captures the disturbance rejection goal, and another weighting function W3 to enforce robustness. Specify these weighting functions as the inverses of the desired loop shapes for the sensitivity S and complementary sensitivity T, respectively. (See "Mixed-Sensitivity Loop Shaping".)

For this example, choose W1 with:

- Low-frequency gain of 100 (40 dB)
- 0 dB crossover at $0.5 \mathrm{rad} / \mathrm{s}$
- High-frequency gain of 0.25 (-12 dB)

Choose W3 to have the opposite low-frequency and high-frequency gains.
W1 = makeweight(100,[1 0.5],0.25);
W3 = makeweight(0.25,[1 0.5],100); bodemag (W1,W3)

Bode Diagram

For this example, do not specify a W2 (no restriction on control effort). Construct the augmented plant, P.

```
P = augw(G,W1,[],W3);
```

G has one input and one output. The augmented plant has an additional input for the control signal, and additional outputs for each of the weights.

```
size(P)
State-space model with 3 outputs, 2 inputs, and 3 states.
```

The inputs and outputs of P are grouped to keep track of the disturbance and control inputs and the error and measurement outputs. For example, example the output groups. Group Y1 contains the two error outputs z, and group $Y 2$ contains the single measurement output.

P.OutputGroup

```
ans = struct with fields:
    Y1: [1 2]
    Y2: 3
```

You can now use P for control design. For example, use hinfsyn to design an H_{∞} optimal controller that meets the design requirements specified by W1 and W3.
[K,CL,gamma] = hinfsyn(P);
gamma

Input Arguments

G - Plant
dynamic system model
Plant, specified as a dynamic system model such as a state-space (ss) model. G can be any LTI model. If G is a generalized state-space model with uncertain or tunable control design blocks, then mixsyn uses the nominal or current value of those elements.

W1, W2, W3 - Weighting functions

dynamic system model | []
Weighting functions, specified as dynamic system models. Choose the weighting functions W1, W2, W3 to shape the frequency responses for tracking and disturbance rejection, controller effort, and noise reduction and robustness. Typically:

- For good reference-tracking and disturbance-rejection performance, choose W1 large inside the control bandwidth to obtain small S.
- For robustness and noise attenuation, choose W3 large outside the control bandwidth to obtain small T.
- To limit control effort in a particular frequency band, increase the magnitude of W_{2} in this frequency band to obtain small $K S$.

If one of the weights is not needed, set it to []. For instance, if you do not want to restrict control effort, use W2 = [].

Use makeweight to create weighting functions with the desired gain profiles. For details about choosing weighting functions, see "Mixed-Sensitivity Loop Shaping".

If G has N_{U} inputs and N_{Y} outputs, then $\mathrm{W} 1, \mathrm{~W} 2, \mathrm{~W} 3$ must be either SISO or square systems of size N_{Y}, N_{U}, and N_{Y}, respectively.

Because $S+T=I$, mixsyn cannot make both S and T small (less than 0 dB) in the same frequency range. Therefore, when you specify weights for loop shaping, there must be a frequency band in which both W 1 and W 3 are below 0 dB .

Output Arguments

P - Augmented plant

dynamic system model
Augmented plant, returned as a state-space (ss) model. P can be any LTI model with inputs [$w ; u$] and outputs $[z ; y]$. augw groups the inputs and outputs of P using the ss properties InputGroup and OutputGroup such that:

- P. InputGroup has field U1 containing the inputs corresponding to w, and field U2 containing the inputs corresponding to u.
- P. OutputGroup has field Y1 containing the outputs corresponding to z, and group Y2 containing the outputs corresponding to e.

Here, $\{w ; u\}$ and $\{z ; e\}$ are the inputs and outputs of P in the following control system.

Tips

- For H_{∞} or H_{2} synthesis, the models G and $\mathbf{W} 1, W 2, W 3$ must be proper. In other words, they must be bounded as $s \rightarrow \infty$ (for continuous-time transfer functions) or $z \rightarrow \infty$ (for discrete-time transfer functions). Additionally, W1, W2 , W3 must be stable. The plant G must be stabilizable and detectable. Otherwise, the resulting P is not stabilizable by any controller.

Algorithms

augw produces the augmented plant $P(s)$ given by:

$$
P(s)=\left[\begin{array}{cc}
W_{1} & -W_{1} G \\
0 & W_{2} \\
0 & W_{3} G \\
I & -G
\end{array}\right]
$$

The partitioning is embedded using $P=$ mktito($P, N Y, N U$), which sets the P. InputGroup and P.OutputGroup properties as follows.

```
[r,c] = size(P);
P.InputGroup = struct('U1',1:c-NU,'U2',c-NU+1:c);
P.OutputGroup = struct('Y1',1:r-NY,'Y2',r-NY+1:r);
```


See Also

h2syn | hinfsyn | makeweight | mixsyn

Topics

"Mixed-Sensitivity Loop Shaping"
Introduced before R2006a

balancmr

Balanced model truncation via square root method

Syntax

```
GRED = balancmr(G)
GRED = balancmr(G,order)
[GRED,redinfo] = balancmr(G,key1,value1,...)
[GRED,redinfo] = balancmr(G,order,key1,value1,...)
```


Description

balancmr returns a reduced order model GRED of G and a struct array redinfo containing the error bound of the reduced model and Hankel singular values of the original system.

The error bound is computed based on Hankel singular values of G. For a stable system these values indicate the respective state energy of the system. Hence, reduced order can be directly determined by examining the system Hankel singular values, $\sigma \iota$.

With only one input argument G , the function will show a Hankel singular value plot of the original model and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the additive error \| G-GRED \| ∞ for well-conditioned model reduced problems [1]:

$$
\| G-\text { Gred } \|_{\infty} \leq 2 \sum_{k+1}^{n} \sigma_{i}
$$

This table describes input arguments for balancmr.

Argument	Description
G	LTI model to be reduced. Without any other inputs, balancmr will plot the Hankel singular values of G and prompt for reduced order
ORDER	(Optional) Integer for the desired order of the reduced model, or optionally a vector packed with desired orders for batch runs

[^0]This table lists the input arguments 'key' and its 'value'.

Argument	Value	Description
'MaxError'	Real number or vector of different errors	Reduce to achieve H_{∞} error. When present, 'MaxError' overrides ORDER input.
'Weights'	\{Wout, Win\} cell array	Optional 1-by-2 cell array of LTI weights Wout (output) and Win (input). The weights must be stable, minimum phase and invertible. When you supply these weights, balancmr finds the reduced model that minimizes the Hankel norm of $W_{\text {out }}^{-1}\left(G-G_{\text {red }}\right) W_{\text {in }}^{-1} .$ You can use weighting functions to make the model reduction algorithm focus on frequency bands of interest. See: - "Reduction with Focus on Particular Frequency Band" on page 1-19 - "Model Reduction With FrequencyDependent Error Profile" on page 122 As an alternative, you can use bal red to focus model reduction on a particular frequency band without defining a weighting function. Using balancmr and providing your own weighting functions allows more precise control over the error profile. Default weights are both identity.
'Display'	'on' ' or 'off'	Display Hankel singular plots (default 'off').
'Order'	Integer, vector or cell array	Order of reduced model. Use only if not specified as 2 nd argument.

This table describes output arguments.

Argument	Description		
GRED	LTI reduced order model. Becomes multidimensional array when input is a serial of different model order array		
REDINFO	A STRUCT array with three fields:		
	- REDINFO.ErrorBound (bound on $\\|G-G R E D\\| \infty$)		
	- REDINFO. StabSV (Hankel SV of stable part of G)		
	- REDINFO.UnstabSV (Hankel SV of unstable part of G)		

G can be stable or unstable, continuous or discrete.

Examples

Choose Order of Reduced Model

If you do not specify any target order for the reduced model, balancmr displays the Hankel singular values of the model and prompts you to choose a reduced-model order.

For this example, use a random 30th-order state-space model.

```
rng(1234,'twister'); % fix random seed for example repeatability
G = rss(30,5,4);
G1 = balancmr(G)
Please enter the desired order: (>=0)
```

Examine the Hankel singular value plot.

The plot shows that most of the energy of the system can be captured in a 20th-order approximation. In the command window, enter 20. balancmr returns G1.

Examine the response of the original and reduced models.
sigma(G,G1)

The 20th-order approximation matches the dynamics of the original 30th-order model fairly well.

Model Reduction to Specified Order

When you have particular target order or orders in mind, you can use balancmr to reduce a highorder model to those orders. For this example, use a random 30th-order state-space model.

```
rng(1234,'twister'); % fix random seed for example repeatability
G = rss(30,5,4);
```

Use a scalar input argument to reduce the model to a single order. For example, compute a 20thorder approximation.

```
[G1,infol] = balancmr(G,20);
sigma(G,G1)
```


Use a vector to generate several approximations. The following command returns an array of models of even orders from 10 to 18.
[G2,info2] = balancmr(G,[10:2:18]);
sigma(G,G2)

Model Reduction to Specified Maximum Error

Obtain the lowest-order approximation such that the sum of the Hankel singular values of the truncated states does not exceed a specified value. For this example, use a random 30th-order statespace model.

```
rng(1234,'twister'); % fix random seed for example repeatability
G = rss(30,5,4);
```

Compute two approximate models, one for which the error does not exceed 0.1, and a second for which the error does not exceed 0.5 . To do so, provide these values in an array. balancmr returns an array of approximate models.

```
Gr = balancmr(G,'MaxError',[0.1 0.5]);
size(Gr)
2x1 array of state-space models.
Each model has 5 outputs, 4 inputs, and between 24 and 26 states.
```

Examine the results.
sigma(G,Gr)

Reduction with Focus on Particular Frequency Band

Reduce a 4th-order system to a second-order approximation with emphasis on the frequency band 10 $\mathrm{rad} / \mathrm{s}-100 \mathrm{rad} / \mathrm{s}$. Consider the following system.
sys $=t f(1,[10.51])+t f(100 *[1 / 101],[1101000]) ;$ bode(sys)

To focus the model-reduction algorithm on the higher-frequency dynamics, specify a function with a bandpass profile.

```
s = tf('s');
w1 = (s+1)/(s/10+1)/(s/60+1)*(s/600+1);
bodemag(w1)
```


Bode Diagram

The plot confirms that the weighting function w1 has the desired profile, peaking between $10 \mathrm{rad} / \mathrm{s}$ and $100 \mathrm{rad} / \mathrm{s}$. To perform the reduction, specify the inverse of this profile as the output weight, using the 'Weights' option of balancmr.
weight = \{1/w1,1\};
wrsys = balancmr(sys,2,'Weights', weight);
Compare the result with a second-order model obtained without the weighting.
rsys = balancmr(sys,2);
bode(sys,rsys,wrsys)
legend('Original','Unweighted','Weighted')

Bode Diagram

The model obtained with the weighting function provides a better match for the dynamics in the frequency band $10 \mathrm{rad} / \mathrm{s}-100 \mathrm{rad} / \mathrm{s}$.

Model Reduction With Frequency-Dependent Error Profile

Use a weighting function to control the frequency dependence of the error between the original and reduced models.

For this example, load a 48-state SISO model and reduce it to 6th order.

```
load('balancmrData.mat','bplant')
bplant6 = balancmr(bplant,6);
bode(bplant,bplant6,bplant-bplant6,logspace(0,2,200))
legend('Original','Reduced','Error')
```


The error is fairly uniformly distributed in frequency. Create a weighting function that allows for a larger error at frequencies below $100 \mathrm{rad} / \mathrm{s}$. In this case, use a biproper function that has unit gain at low frequency, but drops to -40 dB at higher frequencies.

```
W = tf(0.01*[1 1.4e2 le4],[1 14 100]);
bodemag(W,bplant)
```


Bode Diagram

Reduce the model to 6th order again, using this weighting function. Because bplant is a SISO model, you can use the function as either input or output weight.
bplant6W = balancmr(bplant, 6 ,'Weights',\{W,1\});
bode(bplant, bplant6W, bplant-bplant6W, logspace (0, 2, 200))
legend('Original','Reduced w/Weight','Error')

The error is now larger at low frequencies, with a correspondingly better match at high frequencies between the original and reduced models.

Algorithms

Given a state space (A, B, C, D) of a system and k, the desired reduced order, the following steps will produce a similarity transformation to truncate the original state-space system to the $k^{\text {th }}$ order reduced model.

1 Find the SVD of the controllability and observability grammians

P	$=$	U_{p}	Σ_{p}	$V_{p}{ }^{T}$
Q	$=$	$U_{q} \Sigma_{q}$		$V_{q}{ }^{T}$

2 Find the square root of the grammians (left/right eigenvectors)

L_{p}	$=$	U_{p}	$\Sigma_{p}^{1 / 2}$
L_{o}	$=$	U_{q}	$\Sigma_{q}^{1 / 2}$

3 Find the SVD of $\left(L_{o}{ }^{T} L_{p}\right)$
$L_{o}{ }^{T} \quad L_{p}$
$=$
U
Σ

4 Then the left and right transformation for the final $k^{\text {th }}$ order reduced model is

$S_{L, B I G}$	$=$	L_{o}	$U(:, 1: k)$	$\Sigma(1 ; k, 1: k))^{-1 / 2}$
$S_{R, B I G}$	$=$	L_{p}	$V(:, 1: k)$	$\Sigma(1 ; k, 1: k))^{-1 / 2}$

5 Finally,
$\left[\begin{array}{cc}\widehat{A} & \widehat{B} \\ \widehat{C} & \widehat{D}\end{array}\right]=\left[\begin{array}{cc}S_{L, B I G}^{T} A S_{R, B I G} & S_{L, B I G}^{T} B \\ C S_{R, B I G} & D\end{array}\right]$
The proof of the square root balance truncation algorithm can be found in [2].

References

[1] Glover, K., "All Optimal Hankel Norm Approximation of Linear Multivariable Systems, and Their Lp-error Bounds," Int. J. Control, Vol. 39, No. 6, 1984, p. 1145-1193
[2] Safonov, M.G., and R.Y. Chiang, "A Schur Method for Balanced Model Reduction," IEEE Trans. on Automat. Contr., Vol. 34, No. 7, July 1989, p. 729-733

See Also
balred|bstmr|hankelmr|hankelsv|ncfmr|reduce|schurmr
Introduced before R2006a

bilin

Multivariable bilinear transform of frequency (s or z)

Syntax

GT = bilin(G,VERS,METHOD,AUG)

Description

bilin computes the effect on a system of the frequency-variable substitution,
$s=\frac{\alpha z+\delta}{\gamma z+\beta}$
The variable VERS denotes the transformation direction:
VERS $=1$, forward transform $(s \rightarrow z)$ or $(s \rightarrow \tilde{s})$.
VERS $=-1$, reverse transform $(z \rightarrow s)$ or $(\tilde{s} \rightarrow s)$.
This transformation maps lines and circles to circles and lines in the complex plane. People often use this transformation to do sampled-data control system design [1] or, in general, to do shifting of $j \omega$ modes [2], [3], [4].

Bilin computes several state-space bilinear transformations such as backward rectangular, etc., based on the METHOD you select

Bilinear Transform Types

Method	Type of bilinear transform
'BwdRec '	backward rectangular: $s=\frac{z-1}{T z}$ AUG $=T$, the sample time.
'FwdRec '	forward rectangular: $s=\frac{z-1}{T}$ AUG $=T$, the sample time.
'S_Tust'	shifted Tustin: $s=\frac{2}{T}\left(\frac{z-1}{\frac{z}{h}+1}\right)$ AUG $=[T h]$, is the "shift" coefficient.
'S_ftjw'	shifted $j \omega$-axis, bilinear pole-shifting, continuous-time to continuous-time: $\begin{aligned} & s=\frac{\tilde{s}+p_{1}}{1+\tilde{s} / p_{2}} \\ & \text { AUG }=\left[p_{2} p_{1}\right] . \end{aligned}$
'G_Bili'	METHOD = 'G_Bili', general bilinear, continuous-time to continuous-time: $\begin{aligned} s & =\frac{\alpha \tilde{s}+\delta}{\gamma \tilde{s}+\beta} \\ \text { AUG } & =[\alpha \beta \gamma \delta] . \end{aligned}$

Examples

Tustin Continuous s-Plane to Discrete z-Plane Transforms

Consider the following continuous-time plant (sampled at 20 Hz):

$$
A=\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right], B=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], C=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], D=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] ; T_{S}=0.05
$$

Following is an example of four common "continuous to discrete" bilin transformations for the sampled plant:

```
A = [-1 1; 0 -2];
B = [1 0; 1 1];
C = [1 0; 0 1];
D = [0 0; 0 0];
```

sys $=s s(A, B, C, D) ; \quad$ ANALOG

```
Ts = 0.05; % sample time
```

```
syst = c2d(sys,Ts,'tustin'); % Tustin
sysp = c2d(sys,Ts,'prewarp',40); % Pre-warped Tustin
sysb = bilin(sys,1,'BwdRec',Ts); % Backward Rectangular
sysf = bilin(sys,1,'FwdRec',Ts); % Forward Rectangular
```

Plot the response of the continuous-time plant and the transformed discrete-time plants.

```
w = logspace(-2,3,50); % frequencies to plot
sigma(sys,syst,sysp,sysb,sysf,w);
legend('sys','syst','sysp','sysb','sysf','Location','SouthWest')
```


Bilinear continuous to continuous pole-shifting

Design an H mixed-sensitivity controller for the ACC Benchmark plant

$$
G(s)=\frac{1}{s^{2}\left(s^{2}+2\right)}
$$

such that all closed-loop poles lie inside a circle in the left half of the s-plane whose diameter lies on between points [p1,p2]=[-12,-2]:

```
p1=-12; p2=-2; s=zpk('s');
G=ss(1/(s^2*(s^2+2))); % original unshifted plant
Gt=bilin(G,1,'Sft_jw',[p1 p2]); % bilinear pole shifted plant Gt
Kt=mixsyn(Gt,1,[],1); % bilinear pole shifted controller
K =bilin(Kt,-1,'Sft_jw',[p1 p2]); % final controller K
```

As shown in the following figure, closed-loop poles are placed in the left circle [p1 p2]. The shifted plant, which has its non-stable poles shifted to the inside the right circle, is

$$
G_{t}(s)=4.765 \times 10^{-5} \frac{(s-12)^{4}}{(s-2)^{2}\left(s^{2}-4.274 s+5.918\right)}
$$

'S_ftjw' final closed-loop poles are inside the left [p1,p2] circle

Algorithms

bilin employs the state-space formulae in [3]:
$\left[\begin{array}{ll}A_{b} & B_{b} \\ C_{b} & D_{b}\end{array}\right]=\left[\begin{array}{cc}(\beta A-\delta I)(\alpha I+\gamma A)^{-1} & (\alpha \beta-\gamma \delta)(\alpha I-\gamma A)^{-1} B \\ C(\alpha I-\gamma A)^{-1} & D+\gamma C(\alpha I-\gamma A)^{-1} B\end{array}\right]$

References

[1] Franklin, G.F., and J.D. Powell, Digital Control of Dynamics System, Addison-Wesley, 1980.
[2] Safonov, M.G., R.Y. Chiang, and H. Flashner, " H_{∞} Control Synthesis for a Large Space Structure," AIAA J. Guidance, Control and Dynamics, 14, 3, p. 513-520, May/June 1991.
[3] Safonov, M.G., "Imaginary-Axis Zeros in Multivariable H_{∞} Optimal Control", in R.F. Curtain (editor), Modelling, Robustness and Sensitivity Reduction in Control Systems, p. 71-81, Springer-Varlet, Berlin, 1987.
[4] Chiang, R.Y., and M.G. Safonov, " H_{∞} Synthesis using a Bilinear Pole Shifting Transform," AIAA, J. Guidance, Control and Dynamics, vol. 15, no. 5, p. 1111-1117, September-October 1992.

See Also

c2d \| d2c| sectf
Introduced before R2006a

bstmr

Balanced stochastic model truncation (BST) via Schur method

Syntax

```
GRED = bstmr(G)
GRED = bstmr(G,order)
[GRED,redinfo] = bstmr(G,key1,value1,...)
[GRED,redinfo] = bstmr(G,order,key1,value1,...)
```


Description

bstmr returns a reduced order model GRED of G and a struct array redinfo containing the error bound of the reduced model and Hankel singular values of the phase matrix of the original system [2].

The error bound is computed based on Hankel singular values of the phase matrix of G. For a stable system these values indicate the respective state energy of the system. Hence, reduced order can be directly determined by examining these values.

With only one input argument G, the function will show a Hankel singular value plot of the phase matrix of G and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the multiplicative || GRED-1 (G-GRED) $\| \infty$ or relative error $\| \mathrm{G}-1$ (G-GRED) $\| \infty$ for well-conditioned model reduction problems [1]:

$$
\left\|G^{-1}(G-G r e d)\right\|_{\infty} \leq \prod_{k+1}^{n}\left(1+2 \sigma_{i}\left(\sqrt{1+\sigma_{i}^{2}}+\sigma_{i}\right)\right)-1
$$

This table describes input arguments for bstmr.

Argument	Description
G	LTI model to be reduced (without any other inputs will plot its Hankel singular values and prompt for reduced order)
ORDER	(Optional) an integer for the desired order of the reduced model, or a vector of desired orders for batch runs

A batch run of a serial of different reduced order models can be generated by specifying order $=$ $x: y$, or a vector of integers. By default, all the anti-stable part of a system is kept, because from control stability point of view, getting rid of unstable state(s) is dangerous to model a system.
'MaxError' can be specified in the same fashion as an alternative for 'ORDER'. In this case, reduced order will be determined when the accumulated product of Hankel singular values shown in the above equation reaches the 'MaxError'.

Argument	Value	Description
'MaxError'	Real number or vector of different errors	Reduce to achieve H_{∞} error. When present, 'MaxError' overrides 0RDER input.
'Display'	'on' or 'off'	Display Hankel singular plots (default 'off').
'Order'	Integer, vector or cell array	Order of reduced model. Use only if not specified as 2nd argument.

This table describes output arguments.

Argument	Description		
GRED	LTI reduced order model. Become multi-dimension array when input is a serial of different model order array.		
REDINFO	A STRUCT array with three fields:		
	- REDINFO. ErrorBound (bound on $\left.\left\\|G^{-1}(G-G R E D)\right\\| \infty\right)$		
	- REDINFO.StabSV (Hankel SV of stable part of G)		
	- REDINFO.UnstabSV (Hankel SV of unstable part of G)		

G can be stable or unstable, continuous or discrete.

Examples

Given a continuous or discrete, stable or unstable system, G, the following commands can get a set of reduced order models based on your selections:

```
rng(1234,'twister');
G = rss(30,5,4);
G.D = zeros(5,4);
[g1, redinfol] = bstmr(G); % display Hankel SV plot
                    % and prompt for order (try 15:20)
[g2, redinfo2] = bstmr(G,20);
[g3, redinfo3] = bstmr(G,[10:2:18]);
[g4, redinfo4] = bstmr(G,'MaxError',[0.01, 0.05]);
for i = 1:4
    figure(i)
    eval(['sigma(G,g' num2str(i) ');']);
end
```


Algorithms

Given a state space (A, B, C, D) of a system and k, the desired reduced order, the following steps will produce a similarity transformation to truncate the original state-space system to the $k^{\text {th }}$ order reduced model.

1 Find the controllability grammian P and observability grammian Q of the left spectral factor $\Phi=$ $\Gamma(\sigma) \Gamma^{*}(-\sigma)=\Omega^{*}(-\sigma) \Omega(\sigma)$ by solving the following Lyapunov and Riccati equations

2 Find the Schur decomposition for $P Q$ in both ascending and descending order, respectively,

$$
\begin{aligned}
& V_{A}^{T} P Q V_{A}=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & \cdots \\
0 & \cdots & \cdots \\
0 & 0 & \lambda_{n}
\end{array}\right] \\
& V_{D}^{T} P Q V_{D}=\left[\begin{array}{ccc}
\lambda_{n} & \cdots & \cdots \\
0 & \cdots & \cdots \\
0 & 0 & \lambda_{1}
\end{array}\right]
\end{aligned}
$$

3 Find the left/right orthonormal eigen-bases of $P Q$ associated with the $k^{t h}$ big Hankel singular values of the all-pass phase matrix $\left(W^{*}(s)\right)^{-1} G(s)$.

k

$$
\left.\begin{array}{rl}
V_{A} & =\left[V_{R, S M A L L}, V_{L, B I G}^{k}\right.
\end{array}\right]
$$

4 Find the SVD of $\left(V^{T}{ }_{L, B I G} V_{R, B I G}\right)=U \Sigma \varsigma T$
5 Form the left/right transformation for the final $k^{\text {th }}$ order reduced model

$S_{L, B I G}$	$=$	$V_{L, B I G}$	U	$\Sigma(1: k, 1: k)^{-1 / 2}$
$S_{R, B I G}$	$=$	$V_{R, B I G}$	V	$\Sigma(1: k, 1: k)^{-1 / 2}$

6 Finally,

$$
\left[\begin{array}{ll}
\widehat{A} & \widehat{B} \\
\widehat{C} & \widehat{D}
\end{array}\right]=\left[\begin{array}{cc}
S_{L, B I G}^{T} A S_{R, B I G} & S_{L, B I G}^{T} B \\
C S_{R, B I G} & D
\end{array}\right]
$$

The proof of the Schur BST algorithm can be found in [1].

Note The BST model reduction theory requires that the original model D matrix be full rank, for otherwise the Riccati solver fails. For any problem with strictly proper model, you can shift the $j \omega$ axis via bilin such that BST/REM approximation can be achieved up to a particular frequency range of interests. Alternatively, you can attach a small but full rank D matrix to the original problem but remove the D matrix of the reduced order model afterwards. As long as the size of D matrix is insignificant inside the control bandwidth, the reduced order model should be fairly close to the true model. By default, the bstmr program will assign a full rank D matrix scaled by 0.001 of the minimum eigenvalue of the original model, if its D matrix is not full rank to begin with. This serves the purpose for most problems if user does not want to go through the trouble of model pretransformation.

References

[1] Zhou, K., "Frequency-weighted model reduction with L ∞ error bounds," Syst. Contr. Lett., Vol. 21, 115-125, 1993.
[2] Safonov, M.G., and R.Y. Chiang, "Model Reduction for Robust Control: A Schur Relative Error Method," International J. of Adaptive Control and Signal Processing, Vol. 2, p. 259-272, 1988.

See Also

balancmr|hankelmr|hankelsv|ncfmr|reduce | schurmr
Introduced before R2006a

complexify

Replace ureal atoms by summations of ureal and ucomplex (or ultidyn) atoms

Syntax

MC = complexify (M,alpha)
MC = complexify(M,alpha,'ultidyn')

Description

The command complexify replaces ureal atoms with sums of ureal and ucomplex atoms using usubs. Optionally, the sum can consist of a ureal and ultidyn atom.
complexify is used to improve the conditioning of robust stability calculations (robstab) for situations when there are predominantly ureal uncertain elements.

MC = complexify (M, alpha) results in each ureal atom in MC having the same Name and NominalValue as the corresponding ureal atom in M. If Range is the range of one ureal atom from M, then the range of the corresponding ureal atom in $M C$ is

```
[Range(1)+alpha*diff(Range)/2 Range(2)-alpha*diff(Range)/2]
```

The net effect is that the same real range is covered with a real and complex uncertainty. The real parameter range is reduced by equal amounts at each end, and alpha represents (in a relative sense) the reduction in the total range. The ucomplex atom will add this reduction in range back into MC, but as a ball with real and imaginary parts.

The ucomplex atom has NominalValue of 0, and Radius equal to alpha*diff(Range). Its name is the name of the original ureal atom, appended with the characters '_cmpxfy '.

MC = complexify (M,alpha, 'ultidyn') is the same, except that gain-bounded ultidyn atoms are used instead of ucomplex atoms. The ultidyn atom has its Bound equal to alpha*diff(Range).

Examples

Complexified Uncertain Parameter

To illustrate complexification, create a uncertain real parameter, cast it to an uncertain matrix, and apply a 10% complexification.

```
a = umat(ureal('a',2.25,'Range',[1.5 3]));
b = complexify(a,.1);
as = usample(a,200);
bs = usample(b,4000);
```

Make a scatter plot of the values that the complexified matrix (scalar) can take, as well as the values of the original uncertain real parameter.

```
plot(real(bs(:)),imag(bs(:)),'.',real(as(:)),imag(as(:)),'r.')
```

axis([1 3.5-0.2 0.2])

See Also

icomplexify|robstab

Topics

Getting Reliable Estimates of Robustness Margins
Introduced in R2007a

cmsclsyn

Approximately solve constant-matrix, upper bound μ-synthesis problem

Syntax

```
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure);
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,opt);
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,opt,qinit);
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,opt,'random',N)
```


Description

cmsclsyn approximately solves the constant-matrix, upper bound μ-synthesis problem by minimization,

$$
\min _{Q \in C^{r \times t}}^{\mu_{\Delta}}(R+U Q V)
$$

for given matrices $R \in \mathbf{C}^{\mathrm{n}_{\mathrm{m}}}, U \in \mathbf{C}^{\mathrm{n}_{\mathrm{X}}}, V \in \mathbf{C}^{\mathrm{t}} \mathrm{x}_{\mathrm{m}}$, and a set $\Delta \subset \mathbf{C}^{\mathrm{m}_{\mathrm{X}}}$. This applies to constant matrix data in R, U, and V.
[QOPT, BND] = cmsclsyn($R, U, V, B l o c k S t r u c t u r e)$ minimizes, by choice of Q. QOPT is the optimum value of Q, the upper bound of mussv $\left(R+U^{*} Q * V, B L K\right)$, BND. The matrices R, U and V are constant matrices of the appropriate dimension. BlockStructure is a matrix specifying the perturbation blockstructure as defined for mussv.
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,OPT) uses the options specified by OPT in the calls to mussv. See mussv for more information. The default value for OPT is 'cUsw'.
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,OPT,QINIT) initializes the iterative computation from $\mathrm{Q}=$ QINIT. Because of the nonconvexity of the overall problem, different starting points often yield different final answers. If QINIT is an N-D array, then the iterative computation is performed multiple times - the i'th optimization is initialized at $\mathrm{Q}=\operatorname{QINIT}(:,:, i)$. The output arguments are associated with the best solution obtained in this brute force approach.
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,OPT,'random',N) initializes the iterative computation from N random instances of QINIT. If NCU is the number of columns of U, and NRV is the number of rows of V , then the approximation to solving the constant matrix μ synthesis problem is two-fold: only the upper bound for μ is minimized, and the minimization is not convex, hence the optimum is generally not found. If U is full column rank, or V is full row rank, then the problem can (and is) cast as a convex problem, [Packard, Zhou, Pandey and Becker], and the global optimizer (for the upper bound for μ) is calculated.

Algorithms

The cmsclsyn algorithm is iterative, alternatively holding Q fixed, and computing the mussv upper bound, followed by holding the upper bound multipliers fixed, and minimizing the bound implied by choice of Q . If U or V is square and invertible, then the optimization is reformulated (exactly) as an linear matrix inequality, and solved directly, without resorting to the iteration.

References

Packard, A.K., K. Zhou, P. Pandey, and G. Becker, "A collection of robust control problems leading to LMI's," 30th IEEE Conference on Decision and Control, Brighton, UK, 1991, p. 1245-1250.

See Also

hinfsyn | mussv | musyn | robgain | robstab
Introduced before R2006a

dcgainmr

Reduced order model

Syntax

[sysr,syse,gain] = dcgainmr(sys,ord)

Description

[sysr,syse,gain] = dcgainmr(sys,ord) returns a reduced order model of a continuous-time LTI system SYS by truncating modes with least DC gain.

Specify your LTI continuous-time system in sys. The order is specified in ord.
This function returns:

- sysr-The reduced order models (a multidimensional array if sys is an LTI array)
- syse-The difference between sys and sysr (syse=sys-sysr)
- gain-The g-factors (dc-gains)

The DC gain of a complex mode
$(1 /(s+p)) * c^{*}{ }^{\prime}$
is defined as
norm(b)*norm(c)/abs(p)

See Also

reduce

Introduced in R2008a

decay

Quadratic decay rate of polytopic or affine P-systems

Syntax

[drate, P] = decay(ps,options)

Description

For affine parameter-dependent systems

$$
E(p) \dot{x}=A(p) x, \quad p(t)=\left(p_{1}(t), \ldots, p_{n}(t)\right),
$$

or polytopic systems

$$
E(t) \dot{x}=A(t) x, \quad(A, E) \in \operatorname{Co}\left\{\left(A_{1}, E_{1}\right), \ldots,\left(A_{n}, E_{n}\right)\right\},
$$

decay returns the quadratic decay rate drate, i.e., the smallest $\alpha \in R$ such that

$$
A^{\mathrm{T}} Q E \quad+\quad E Q A^{\mathrm{T}} \ll \quad \alpha Q
$$

holds for some Lyapunov matrix $Q>0$ and all possible values of (A, E). Two control parameters can be reset via options(1) and options(2):

- If options (1)=0 (default), decay runs in fast mode, using the least expensive sufficient conditions. Set options(1)=1 to use the least conservative conditions.
- options(2) is a bound on the condition number of the Lyapunov matrix P. The default is 109 .

See Also

pdlstab|psys|quadstab
Introduced before R2006a

decinfo

Describe how entries of matrix variable X relate to decision variables

Syntax

```
decinfo(lmisys)
decX = decinfo(lmisys,X)
```


Description

The function decinfo expresses the entries of a matrix variable X in terms of the decision variables x_{1}, \ldots, x_{N}. Recall that the decision variables are the free scalar variables of the problem, or equivalently, the free entries of all matrix variables described in lmisys. Each entry of X is either a hard zero, some decision variable x_{n}, or its opposite $-x_{n}$.

If X is the identifier of X supplied by lmivar, the command

```
decX = decinfo(lmisys,X)
```

returns an integer matrix decX of the same dimensions as X whose (i, j) entry is

- 0 if $X(i, j)$ is a hard zero
- n if $X(i, j)=x_{n}$ (the n-th decision variable)
- $-n$ if $X(i, j)=-x_{n}$
dec X clarifies the structure of X as well as its entry-wise dependence on x_{1}, \ldots, x_{N}. This is useful to specify matrix variables with atypical structures (see lmivar).
decinfo can also be used in interactive mode by invoking it with a single argument. It then prompts the user for a matrix variable and displays in return the decision variable content of this variable.

Examples

Example 1

Consider an LMI with two matrix variables X and Y with structure:

- $X=x I_{3}$ with x scalar
- Y rectangular of size 2-by-1

If these variables are defined by

```
setlmis([])
X = lmivar(1,[3 0])
Y = lmivar(2,[2 1])
    :
    :
lmis = getlmis
```

the decision variables in X and Y are given by

```
dX = decinfo(lmis,X)
dX =
        1 0 0
        0
dY = decinfo(lmis,Y)
dY =
        2
        3
```

This indicates a total of three decision variables $\chi_{1}, \chi_{2}, \chi_{3}$ that are related to the entries of X and Y by

$$
X=\left(\begin{array}{ccc}
x_{1} & 0 & 0 \\
0 & x_{1} & 0 \\
0 & 0 & x_{1}
\end{array}\right), Y=\binom{x_{2}}{x 3}
$$

Note that the number of decision variables corresponds to the number of free entries in X and Y when taking structure into account.

Example 2

Suppose that the matrix variable X is symmetric block diagonal with one 2-by-2 full block and one 2-by-2 scalar block, and is declared by

```
setlmis([])
X = lmivar(1,[2 1;2 0])
lmis = getlmis
```

The decision variable distribution in X can be visualized interactively as follows:

```
decinfo(lmis)
There are 4 decision variables labeled x1 to x4 in this problem.
Matrix variable Xk of interest (enter k between 1 and 1, or 0 to quit):
?> 1
The decision variables involved in X1 are among {-x1,...,x4}.
Their entry-wise distribution in X1 is as follows
        (0,j>0,-j<0 stand for 0,xj,-xj, respectively):
X1 :
\begin{tabular}{llll}
1 & 2 & 0 & 0 \\
2 & 3 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4
\end{tabular}
Matrix variable Xk of interest (enter k between 1 and 1, or 0 to quit):
?> 0
```


See Also

dec2mat|lmivar|mat2dec

Introduced before R2006a

decnbr

Total number of decision variables in system of LMIs

Syntax

ndec $=$ decnbr(lmisys)

Description

The function decnbr returns the number ndec of decision variables (free scalar variables) in the LMI problem described in lmisys. In other words, ndec is the length of the vector of decision variables.

Examples

For an LMI system lmis with two matrix variables X and Y such that

- X is symmetric block diagonal with one 2-by-2 full block, and one 2-by-2 scalar block
- Y is 2-by-3 rectangular,
the number of decision variables is
ndec $=$ decnbr(LMIs)
ndec $=$
10
This is exactly the number of free entries in X and Y when taking structure into account (see decinfo for more details).

See Also

dec2mat|decinfo|mat2dec

Introduced before R2006a

dec2mat

Given values of decision variables, derive corresponding values of matrix variables

Syntax

valX = dec2mat(lmisys,decvars, X)

Description

Given a value decvars of the vector of decision variables, dec2mat computes the corresponding value valX of the matrix variable with identifier X . This identifier is returned by lmivar when declaring the matrix variable.

Recall that the decision variables are all free scalar variables in the LMI problem and correspond to the free entries of the matrix variables X_{1}, \ldots, X_{K}. Since LMI solvers return a feasible or optimal value of the vector of decision variables, dec2mat is useful to derive the corresponding feasible or optimal values of the matrix variables.

Examples

See the description of feasp.

See Also

decinfo|decnbr|mat2dec

Introduced before R2006a

defcx

Help specify $c^{T} \chi$ objectives for mincx solver

Syntax

[V1,..., Vk] = defcx(lmisys,n,X1, ...,Xk)

Description

defcx is useful to derive the c vector needed by mincx when the objective is expressed in terms of the matrix variables.

Given the identifiers $\mathrm{X} 1, \ldots, \mathrm{Xk}$ of the matrix variables involved in this objective, defcx returns the values $\mathrm{V} 1, \ldots, \mathrm{Vk}$ of these variables when the n-th decision variable is set to one and all others to zero.

See Also

decinfo|mincx
Introduced before R2006a

dellmi

Remove LMI from system of LMIs

Syntax

newsys = dellmi(lmisys,n)

Description

dellmi deletes the n-th LMI from the system of LMIs described in lmisys. The updated system is returned in newsys.

The ranking n is relative to the order in which the LMIs were declared and corresponds to the identifier returned by newlmi. Since this ranking is not modified by deletions, it is safer to refer to the remaining LMIs by their identifiers. Finally, matrix variables that only appeared in the deleted LMI are removed from the problem.

Examples

Suppose that the three LMIs

$$
\begin{aligned}
& A_{1}^{T} X_{1}+X_{1} A_{1}+Q_{1}<0 \\
& A_{2}^{T} X_{2}+X_{2} A_{2}+Q_{2}<0 \\
& A_{3}^{T} X_{3}+X_{3} A_{3}+Q_{3}<0
\end{aligned}
$$

have been declared in this order, labeled LMI1, LMI2, LMI3 with newlmi, and stored in lmisys. To delete the second LMI, type
lmis = dellmi(lmisys,LMI2)
lmis now describes the system of LMIs

$$
\begin{aligned}
& A_{1}^{T} X_{1}+X_{1} A_{1}+Q_{1}<0 \\
& A_{3}^{T} X_{3}+X_{3} A_{3}+Q_{3}<0
\end{aligned}
$$

and the second variable X_{2} has been removed from the problem since it no longer appears in the system.

To further delete LMI3 from the system, type
lmis = dellmi(lmis,LMI3)
or equivalently
lmis $=$ dellmi(lmis, 3)
Note that the system has retained its original ranking after the first deletion.

See Also

lmiedit|lmiinfo|newlmi
Introduced before R2006a

delmvar

Remove one matrix variable from LMI problem

Syntax

newsys = delmvar(lmisys,X)

Description

delmvar removes the matrix variable X with identifier X from the list of variables defined in lmisys. The identifier X should be the second argument returned by lmivar when declaring X. All terms involving X are automatically removed from the list of LMI terms. The description of the resulting system of LMIs is returned in newsys.

Examples

Consider the LMI

$$
0<\left(\begin{array}{cc}
A^{T} Y+B^{T} Y A+Q & C X+D \\
X^{T} C^{T}+D^{T} & -\left(X+X^{T}\right)
\end{array}\right)
$$

involving two variables X and Y with identifiers X and Y . To delete the variable X, type
lmisys = delmvar(lmisys, X)
Now lmisys describes the LMI

$$
0<\left(\begin{array}{cc}
A^{T} Y B+B^{T} Y A+Q & D \\
D^{T} & 0
\end{array}\right)
$$

with only one variable Y. Note that Y is still identified by the label Y.

See Also

lmiinfo|lmivar|setmvar
Introduced before R2006a

diag

Diagonalize vector of uncertain matrices and systems

Syntax

$v=\operatorname{diag}(x)$

Description

If x is a vector of uncertain system models or matrices, $\operatorname{diag}(x)$ puts x on the main diagonal. If x is a matrix of uncertain system models or matrices, $\operatorname{diag}(x)$ is the main diagonal of $x . \operatorname{diag}(\operatorname{diag}(x))$ is a diagonal matrix of uncertain system models or matrices.

Examples

The statement produces a diagonal system $m \times g$ of size 4 -by-4. Given multivariable system xx , a vector of the diagonal elements of xxg is found using diag.

```
x = rss(3,4,1);
xg = frd(x,logspace(-2,2,80));
size(xg)
FRD model with 4 output(s) and 1 input(s), at 80 frequency point(s).
mxg = diag(xg);
size(mxg)
FRD model with 4 output(s) and 4 input(s), at 80 frequency point(s).
xxg = [xg(1:2,1) xg(3:4,1)];
m = diag(xxg);
size(m)
FRD model with 2 output(s) and 1 input(s), at 80 frequency point(s).
```


See Also

append

Introduced before R2006a

diskmargin

Disk-based stability margins of feedback loops

Syntax

[DM,MM] = diskmargin(L)
MMIO = diskmargin(P, C)
___ $=$ diskmargin(, E)

Description

[DM, MM] = diskmargin(L) computes the disk-based stability margins for the SISO or MIMO negative feedback loop feedback $(L$, eye (N)), where N is the number of inputs and outputs in L.

The diskmargin command returns loop-at-a-time stability margins in DM and multiloop margins in MM. Disk-based margin analysis provides a stronger guarantee of stability than the classical gain and phase margins. For general information about disk margins, see "Stability Analysis Using Disk Margins".

MMIO = diskmargin (P, C) computes the stability margins when considering independent, concurrent variations at both the plant inputs and plant outputs the negative feedback loop of the following diagram.

= diskmargin(\qquad , E) specifies an additional eccentricity parameter that biases the modeled gain and phase variation toward gain increase (positive E) or gain decrease (negative E). You can use this argument to test the relative sensitivity of stability margins to gain increases versus decreases. You can use this argument with any of the previous syntaxes.

Examples

Disk Margins of MIMO Feedback Loop

diskmargin computes both loop-at-a-time and multiloop disk margins. This example illustrates that loop-at-a-time margins can give an overly optimistic assessment of the true robustness of MIMO feedback loops. Margins of individual loops can be sensitive to small perturbations in other loops, and loop-at-a-time margins ignore such loop interactions.

Consider the two-channel MIMO feedback loop of the following illustration.

The plant model P is drawn from "MIMO Stability Margins for Spinning Satellite" and C is the static output-feedback gain [1-2;01].

```
a = [0 10;-10 0];
b = eye(2);
c = [1 10;-10 1];
P = ss(a,b,c,0);
C = [1 -2;0 1];
```

Compute the disk-based margins at the plant output. The negative-feedback open-loop response at the plant output is Lo $=P^{*} C$.

```
Lo = P*C;
[DMo,MMo] = diskmargin(Lo);
```

Examine the loop-at-a-time disk margins returned in the structure array DM. Each entry in DM contains the stability margins of the corresponding feedback channel.

DMo(1)

```
ans = struct with fields:
    GainMargin: [0 Inf]
    PhaseMargin: [-90 90]
        DiskMargin: 2
        LowerBound: 2
        UpperBound: 2
        Frequency: Inf
    WorstPerturbation: [2x2 ss]
```

DMo(2)
ans $=$ struct with fields:
GainMargin: [0 Inf]
PhaseMargin: [-90 90]
DiskMargin: 2
LowerBound: 2
UpperBound: 2
Frequency: 0
WorstPerturbation: [2x2 ss]

The loop-at-a-time margins are excellent (infinite gain margin and 90° phase margin). Next examine the multiloop disk margins MMo. These consider independent and concurrent gain (phase) variations in both feedback loops. This is a more realistic assessment because plant uncertainty typically affects both channels simultaneously.

```
MMo
MMo = struct with fields:
    GainMargin: [0.6839 1.4621]
    PhaseMargin: [-21.2607 21.2607]
        DiskMargin: 0.3754
        LowerBound: 0.3754
        UpperBound: 0.3762
        Frequency: 0
    WorstPerturbation: [2x2 ss]
```

The multiloop gain and phase margins are much weaker than their loop-at-a-time counterparts. Stability is only guaranteed when the gain in each loop varies by a factor less than 1.46, or when the phase of each loop varies by less than 21°. Use diskmarginplot to visualize the gain and phase margins as a function of frequency.

```
diskmarginplot(Lo)
```

Disk-Based Stability Margins

Typically, there is uncertainty in both the actuators (inputs) and sensors (outputs). Therefore, it is a good idea to compute the disk margins at the plant inputs as well as the outputs. Use Li = C*P to
compute the margins at the plant inputs. For this system, the margins are the same at the plant inputs and outputs.

```
Li = C*P;
[DMi,MMi] = diskmargin(Li);
MMi
MMi = struct with fields:
    GainMargin: [0.6839 1.4621]
    PhaseMargin: [-21.2607 21.2607]
        DiskMargin: 0.3754
        LowerBound: 0.3754
        UpperBound: 0.3762
        Frequency: 0
    WorstPerturbation: [2x2 ss]
```

Finally, you can also compute the multiloop disk margins for gain or phase variations at both the inputs and outputs of the plant. This approach is the most thorough assessment of stability margins, because it this considers independent and concurrent gain or phase variations in all input and output channels. As expected, of all three measures, this gives the smallest gain and phase margins.

```
MMio = diskmargin(P,C);
diskmarginplot(MMio.GainMargin)
```


Stability is only guaranteed when the gain varies by a less than 2 dB or when the phase varies by less than 13°. However, these variations take place at the inputs and the outputs of P, so the total change in I/O gain or phase is twice that.

Sensitivity of Disk-Based Margins to Gain Increase and Decrease

By default, diskmargin computes a symmetric gain margin, with gmin $=1 /$ gmax, and an associated phase margin. In some systems, however, loop stability may be more sensitive to increases or decreases in open-loop gain. Use the eccentricity parameter E to examine this sensitivity.

Compute the disk margin and associated disk-based gain and phase margins for a SISO transfer function, at three values of E. Negative E biases the computation toward gain decrease. Positive E biases toward gain increase.

```
L = tf(25,[1 10 10 10]);
DMdec = diskmargin(L,-2);
DMbal = diskmargin(L,0);
DMinc = diskmargin(L,2);
DGMdec = DMdec.GainMargin
DGMdec = 1\times2
    0.4013 1.3745
DGMbal = DMbal.GainMargin
DGMbal = 1\times2
    0.6273 1.5942
DGMinc = DMinc.GainMargin
DGMinc = 1\times2
    0.7717 1.7247
```

Put together, these results show that in the absence of phase variation, stability is maintained for relative gain variations between 0.4 and 1.72. To see how the phase margin depends on these gain variations, plot the stable ranges of gain and phase variations for each diskmargin result.

```
diskmarginplot([DGMdec;DGMbal;DGMinc])
legend('E = -2','E = 0','E = 2')
title('Stable range of gain and phase variations')
```


This plot shows that the feedback loop can tolerate larger phase variations when the gain decreases. In other words, the loop stability is more sensitive to gain increase. Although $E=-2$ yields a phase margin as large as 30 degrees, this large value assumes a small gain increase of less than 3 dB . However, the plot shows that when the gain increases by 4 dB , the phase margin drops to less than 15 degrees. By contrast, it remains greater than 30 degrees when the gain decreases by 4 dB .

Thus, varying the eccentricity E can give a fuller picture of sensitivity to gain and phase uncertainty. Unless you are mostly concerned with gain variations in one direction (increase or decrease), it is not recommended to draw conclusions from a single nonzero value of E. Instead use the default $E=0$ to get unbiased estimates of gain and phase margins. When using nonzero values of E, use both positive and negative values to compare relative sensitivity to gain increase and decrease.

Input Arguments

L - Open-loop response

dynamic system model | model array

Open-loop response, specified as a dynamic system model. L can be SISO or MIMO, as long as it has the same number of inputs and outputs. diskmargin computes the disk-based stability margins for the negative-feedback closed-loop system feedback(L, eye(N)).

To compute the disk margins of the positive feedback system feedback(L,eye(N) , +1), use diskmargin(-L).

When you have a controller P and a plant C, you can compute the disk margins for gain (or phase) variations at the plant inputs or outputs, as in the following diagram.

- To compute margins at the plant outputs, set $\mathrm{L}=\mathrm{P} * \mathrm{C}$.
- To compute margins at the plant inputs, set L = C*P.

L can be continuous time or discrete time. If L is a generalized state-space model (genss or uss) then diskmargin uses the current or nominal value of all control design blocks in L .

If L is a frequency-response data model (such as $f r d$), then diskmargin computes the margins at each frequency represented in the model. The function returns the margins at the frequency with the smallest disk margin.

If L is a model array, then diskmargin computes margins for each model in the array.

P - Plant

dynamic system model
Plant, specified as a dynamic system model. P can be SISO or MIMO, as long as $\mathrm{P} * \mathrm{C}$ has the same number of inputs and outputs. diskmargin computes the disk-based stability margins for a negativefeedback closed-loop system. To compute the disk margins of the system with positive feedback, use diskmargin($\mathrm{P},-\mathrm{C}$).

P can be continuous time or discrete time. If P is a generalized state-space model (genss or uss) then diskmargin uses the current or nominal value of all control design blocks in P.

If P is a frequency-response data model (such as $f r d$), then diskmargin computes the margins at each frequency represented in the model. The function returns the margins at the frequency with the smallest disk margin.

C - Controller

dynamic system model

Controller, specified as a dynamic system model. C can be SISO or MIMO, as long as P*C has the same number of inputs and outputs. diskmargin computes the disk-based stability margins for a negative-feedback closed-loop system. To compute the disk margins of the system with positive feedback, use diskmargin($\mathrm{P},-\mathrm{C}$).

C can be continuous time or discrete time. If C is a generalized state-space model (genss or uss) then diskmargin uses the current or nominal value of all control design blocks in C.

If C is a frequency-response data model (such as $f r d$), then diskmargin computes the margins at each frequency represented in the model. The function returns the margins at the frequency with the smallest disk margin.

E-Eccentricity

0 (default) | real scalar
Eccentricity of uncertainty region used to compute the stability margins, specified as a real scalar value. This parameter biases the uncertainty used to model gain and phase variations toward gain increase or gain decrease.

- The default $E=0$ uses a balanced model of gain variation in a range [gmin, gmax], with gmin $=$ 1/gmax.
- Positive E uses a model with more gain increase than decrease (gmax > 1/gmin).
- Negative E uses a model with more gain decrease than increase (gmin $<1 /$ gmax).

Use the default $E=0$ to get unbiased estimates of gain and phase margins. You can test relative sensitivity to gain increase and decrease by comparing the margins obtained with both positive and negative E values. For an example, see "Sensitivity of Disk-Based Margins to Gain Increase and Decrease" on page 1-56. For more detailed information about how the choice of E affects the margin computation, see "Stability Analysis Using Disk Margins".

Output Arguments

DM - Disk margins for each feedback channel

structure | structure array
Disk margins for each feedback channel with all other loops closed, returned as a structure for SISO feedback loops, or an N-by-1 structure array for a MIMO loop with N feedback channels. The fields of DM(i) are:

Field	Value
GainMargin	Disk-based gain margins of the corresponding feedback channel, returned as a vector of the form [gmin, gmax]. These values express in absolute units the amount by which the loop gain in that channel can decrease or increase while preserving stability. For example, if DM(i).GainMargin = $[0.8,1.25]$ then the gain of the $i^{\text {th }}$ loop can be multiplied by any factor between 0.8 and 1.25 without causing instability. When $\mathrm{E}=0$, gmin $=1 /$ gmax. If the open-loop gain can change sign without loss of stability, gmin can be less than zero for large enough negative E. If the nominal closedloop system is unstable, then DM(i).GainMargin = [lll.

Field	Value
PhaseMargin	Disk-based phase margin of the corresponding feedback channel, returned as a vector of the form [$-\mathrm{pm}, \mathrm{pm}$] in degrees. These values express the amount by which the loop phase in that channel can decrease or increase while preserving stability. If the closed-loop system is unstable, then DM(i). PhaseMargin = [0 0].
DiskMargin	Maximum α compatible with closed-loop stability for the corresponding feedback channel. α parameterizes the uncertainty in the loop response (see "Algorithms" on page 1-63). If the closed-loop system is unstable, then DM(i). DiskMargin $=0$.
LowerBound	Lower bound on disk margin. This value is the same as DiskMargin.
UpperBound	Upper bound on disk margin. This value represents an upper limit on the actual disk margin of the system. In other words, the disk margin is guaranteed to be no worse than LowerBound and no better than UpperBound.
Frequency	Frequency at which the weakest margin occurs for the corresponding loop channel. This value is in rad/TimeUnit, where TimeUnit is the TimeUnit property of L .
WorstPerturbation	Smallest gain and phase variation that drives the feedback loop unstable, returned as a state-space (ss) model with N inputs and outputs, where N is the number of inputs and outputs in L. The system $F(s)=$ WorstPerturbation is such that the following feedback loop is marginally stable, with a pole on the stability boundary at the frequency DM(i).Frequency.
	This state-space model is a diagonal perturbation of the form $F(s)=$ $\operatorname{diag}(f 1(s), \ldots, f N(s))$. Each $f j(s)$ is a real-parameter dynamic system that realizes the worst-case complex gain and phase variation applied to each channel of the feedback loop. For the loop-at-a-time margin of the $k^{\text {th }}$ feedback loop, only the $k^{\text {th }}$ entry $f \mathrm{k}(\mathrm{s})$ of DM (k). WorstPerturbation differs from unity. When analyzing a linear approximation of a nonlinear system, it can be useful to inject WorstPerturbation into the nonlinear simulation to further analyze the destabilizing affect of this worst-case gain and phase variation. For an example, see "Robust MIMO Controller for Two-Loop Autopilot".

When $L=P * C$ is the open-loop response of a system comprising a controller and plant with unit negative feedback in each channel, DM contains the stability margins for variations at the plant outputs. To compute the stability margins for variations at the plant inputs, use $\mathrm{L}=\mathrm{C} * \mathrm{P}$. To compute
the stability margins for simultaneous, independent variations at both the plant inputs and outputs, use MMIO = diskmargin(P,C).

When L is a model array, DM has additional dimensions corresponding to the array dimensions of L. For instance, if L is a 1-by-3 array of two-input, two-output models, then DM is a 2 -by- 3 structure array. $D M(j, k)$ contains the margins for the $j^{\text {th }}$ feedback channel of the $k^{\text {th }}$ model in the array.

MM - Multiloop disk margins

structure
Multiloop disk margins, returned as a structure. The gain (or phase) margins quantify how much gain variation (or phase variation) the system can tolerate in all feedback channels at once while remaining stable. Thus, MM is a single structure regardless of the number of feedback channels in the system. (For SISO systems, MM = DM.) The fields of MM are:

Field	Value
GainMargin	Multiloop disk-based gain margins, returned as a vector of the form [gmin, gmax]. These values express in absolute units the amount by which the loop gain can vary in all channels independently and concurrently while preserving stability. For example, if MM. GainMargin $=[0.8,1.25]$ then the gain of all loops can be multiplied by any factor between 0.8 and 1.25 without causing instability. When E = 0, gmin = 1/gmax.
PhaseMargin	Multiloop disk-based phase margin, returned as a vector of the form [- pm, pm] in degrees. These values express the amount by which the loop phase can vary in all channels independently and concurrently while preserving stability.
DiskMargin	Maximum α compatible with closed-loop stability. α parameterizes the uncertainty in the loop response (see "Algorithms" on page 1-63).
LowerBound	Lower bound on disk margin. This value is the same as DiskMargin.
UpperBound	Upper bound on disk margin. This value represents an upper limit on the actual disk margin of the system. In other words, the disk margin is guaranteed to be no worse than LowerBound and no better than UpperBound.
Frequency	Frequency at which the weakest margin occurs. This value is in rad/ TimeUnit, where TimeUnit is the TimeUnit property of L.

Field	Value
WorstPerturbation	Smallest gain and phase variation that drives the feedback loop unstable, returned as a state-space (ss) model with N inputs and outputs, where N is the number of inputs and outputs in L . The system $\mathrm{F}(\mathrm{s})$ WorstPerturbation is such that the following feedback loop is marginally stable, with a pole on the stability boundary at MM. Frequency.
	This state-space model is a diagonal perturbation of the form $\mathrm{F}(\mathrm{s})=$ diag($\mathrm{f} 1(\mathrm{~s}), \ldots ., \mathrm{fN}(\mathrm{s})$). Each fj (s) is a real-parameter dynamic system that realizes the worst-case complex gain and phase variation applied to each channel of the feedback loop. When analyzing a linear approximation of a nonlinear system, it can be
useful to inject WorstPerturbation into the nonlinear simulation to	
further analyze the destabilizing affect of this worst-case gain and phase	
variation. For an example, see "Robust MIMO Controller for Two-Loop	
Autopilot".	

When $L=P * C$ is the open-loop response of a system comprising a controller and plant with unit negative feedback in each channel, MM contains the stability margins for variations at the plant outputs. To compute the stability margins for variations at the plant inputs, use $L=C * P$. To compute the stability margins for simultaneous, independent variations at both the plant inputs and outputs, use MMIO = diskmargin(P, C).

When L is a model array, MM is a structure array with one entry for each model in L.

MMIO - Disk margins for independent variations in all input and output channels

structure

Disk margins for independent variations applied simultaneously at input and output channels of the plant P, returned as a structure having the same fields as MM.

For variations applied simultaneously at inputs and outputs, the WorstPerturbation field is itself a structure with fields Input and Output. Each of these fields contains a state-space model such that for Fi(s) = MMIO.WorstPerturbation.Input and Fo(s) = MMIO. WorstPerturbation. Output, the system of the following diagram is marginally unstable, with a pole on the stability boundary at the frequency MMIO. Frequency.

These state-space models Input and Output are diagonal perturbations of the form $F(s)=$ $\operatorname{diag}(f 1(s), \ldots, f N(s))$. Each $f j(s)$ is a real-parameter dynamic system that realizes the worstcase complex gain and phase variation applied to each channel of the feedback loop.

Tips

- diskmargin assumes negative feedback. To compute the disk margins of a positive feedback system, use diskmargin(-L) or diskmargin($\mathrm{P},-\mathrm{C}$).
- To compute disk margins for a system modeled in Simulink ${ }^{\circledR}$, first linearize the model to obtain the open-loop response at a particular operating point. Then, use diskmargin to compute stability margins for the linearized system. For more information, see "Stability Margins of a Simulink Model".
- To compute classical gain and phase margins, use allmargin.
- You can visualize disk margins using diskmarginplot.

Algorithms

diskmargin computes gain and phase margins by applying a disk-based uncertainty model to represent gain and phase variations, and then finding the largest such disk for which the closed-loop system is stable.

Gain and Phase Uncertainty Model

For SISO L, the uncertainty model for disk-margin analysis incorporates a multiplicative complex uncertainty F into the loop transfer function as follows:

$$
F=\frac{1+\alpha[(1-E) / 2] \delta}{1-\alpha[(1+E) / 2] \delta} .
$$

Here,

- δ is a gain-bounded dynamic uncertainty, normalized so that it always varies within the unit disk (| $\delta \mid<1$).
- α sets the amount of gain and phase variation modeled by F. For fixed E, the parameter α controls the size of the disk. For $\alpha=0$, the multiplicative factor is 1 , corresponding to the nominal L.
- E, called the eccentricity, skews the modeled uncertainty toward gain increase or gain decrease. (For details about the effect of eccentricity on the uncertainty model, see "Stability Analysis Using Disk Margins".)

For MIMO systems, the model allows the uncertainty to vary independently in each channel:

$$
F_{j}=\frac{1+\alpha[(1-E) / 2] \delta_{j}}{1-\alpha[(1+E) / 2] \delta_{j}} .
$$

The model replaces the MIMO open-loop response L with $L^{*} F$, where

$$
F=\left(\begin{array}{ccc}
F_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & F_{N}
\end{array}\right)
$$

Disk-Margin Computation

For a given E, the disk margin is the largest α for which the closed-loop system feedback ($L * F, 1$) (or feedback (L*F, eye(N)) for MIMO systems) is stable for all values of F. To find this value, diskmargin solves a robust stability problem: Find the largest α such that the closed-loop system is stable for all F in the uncertainty disk $\Delta(\alpha, E)$ described by

$$
\Delta(\alpha, E)=\left\{F=\frac{1+\alpha[(1-E) / 2] \delta}{1-\alpha[(1+E) / 2] \delta}:|\delta|<1\right\} .
$$

In the SISO case, the robust stability analysis leads to

$$
\alpha_{\max }=\left\|\frac{1}{S+(E-1) / 2}\right\|_{\infty},
$$

where S is the sensitivity function $(1+L)^{-1}$.
In the MIMO case, the robust stability analysis leads to

$$
\alpha_{\max }=\frac{1}{\mu_{\Delta}\left(S+\frac{(E-1) I}{2}\right)} .
$$

Here, μ_{Δ} is the structured singular value (mussv) for the diagonal structure

$$
\Delta=\left(\begin{array}{ccc}
\delta_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \delta_{N}
\end{array}\right),
$$

and δ_{j} is the normalized uncertainty for each F_{j}.
For more details about the margin computation, see Section 6 in [1].

Compatibility Considerations

Disk-based gain-margin range can include negative gains

Behavior changed in R2020a
The diskmargin command returns disk-based gain margins in the GainMargin field of its output structures DM, MM, and MMIO. These margins take the form [gmin, gmax], meaning that the open-loop gain can be multiplied by any factor in that range without loss of closed-loop stability. Beginning in R2020a, the lower end of the range gmin can be negative for some negative values of the eccentricity E , if the closed-loop system remains stable even if the sign of the open-loop gain changes. The eccentricity controls the bias in the disk-based gain margin toward gain decrease or increase (see "Stability Analysis Using Disk Margins"). Previously, the gain-margin range was always positive.

References

[1] Blight, J.D., R.L. Dailey, and D. Gangsaas. "Practical Control Law Design for Aircraft Using Multivariable Techniques." International Journal of Control. Vol. 59, Number 1, 1994, pp. 93137.

See Also

allmargin|diskmargin|diskmarginplot|margin|wcdiskmargin|wcdiskmarginplot

Topics

"Stability Analysis Using Disk Margins"
"Stability Margins of a Simulink Model"
Introduced in R2018b

diskmarginoptions

Customize disk-based stability-margin plots

Syntax

opts = diskmarginoptions
opts = diskmarginoptions('cstprefs')

Description

opts = diskmarginoptions returns the default option set for plots you generate with diskmarginplot and wcdiskmarginplot. You can then use dot notation to change option values. Use opts to customize the plot appearance.
opts = diskmarginoptions('cstprefs') initializes the plot options with the options you have specified in the Control System Toolbox ${ }^{\mathrm{TM}}$ Preferences Editor. For more information about the editor, see "Toolbox Preferences Editor" (Control System Toolbox).

Examples

Disk Margin Plot with Customized Appearance

Plot the disk margins as a function of frequency of a system with the following open-loop response.
$\mathrm{L}=\mathrm{tf}(25,[1101010])$;
For the plot, specify the following attributes:

- Frequency units: Hz
- Gain margins on a log scale, in absolute units
- Grid on
opts = diskmarginoptions;
opts.FreqUnits = 'Hz';
opts.MagScale = ' \log ';
opts.MagUnits = 'abs';
opts.grid = 'on';
diskmarginplot(L,opts)

Worst-Case Disk Margin Plot with Customized Appearance

Plot the worst-case disk margins as a function of frequency of a system with the following open-loop response.

```
a = ureal('a',10,'PlusMinus',[-4,4]);
L = tf(25,[1 a a a]);
```

For the plot, use the default preferences specified in your Control System Toolbox preference, except specify the following attributes:

- Frequency units: Hz
- Gain margins on a log scale, in absolute units
- Grid on
opts = diskmarginoptions('cstprefs');
opts.FreqUnits = 'Hz';
opts.MagScale = 'log';
opts.MagUnits = 'abs';
opts.grid = 'on';
$\mathrm{w}=\{2 * \mathrm{pi} * 1 \mathrm{e}-3,2 * \mathrm{pi} * 10\} ; \quad \% \mathrm{rad} / \mathrm{s}$
wcdiskmarginplot(L, w,opts)

Disk-Based Stability Margins

The plot you obtain might differ in appearance, depending on your current Control System Toolbox preference settings. (See "Toolbox Preferences Editor" (Control System Toolbox).)

Output Arguments

opts - Options for disk margin plot

diskmarginplot options set
Options for disk-margin plots of dynamic systems, returned as a diskmarginplot options set. Initialize the value of opts with either default options or the values specified in the Control System Toolbox preferences editor. Customize the option values using dot notation. Then, use opts with diskmarginplot or wcdiskmarginplot to customize plots of the disk-based stability margins of dynamic systems. The following table lists the available options.

Option	Description
FreqUnits	Frequency units, specified as one of the following: - 'rad/second ' (default) - 'auto' - Use frequency units rad/TimeUnit relative to system time units specified in the TimeUnit property of the dynamic system. - 'Hz' - 'rpm' - 'kHz' - 'MHz' - 'GHz' - 'rad/nanosecond' - 'rad/microsecond' - 'rad/millisecond' - 'rad/minute' - 'rad/hour' - 'rad/day' - 'rad/week' - 'rad/month' - 'rad/year' - 'cycles/nanosecond' - 'cycles/microsecond' - 'cycles/millisecond' - 'cycles/hour' - 'cycles/day' - 'cycles/week' - 'cycles/month' - 'cycles/year'
FreqScale	Frequency scale, specified as: - ' log' (default) - 'linear'
MagUnits	Units of gain margin, specified as: - 'dB' (default) - 'abs' - Absolute units
MagScale	Scale of gain-margin plot, specified as: - 'linear' (default) - 'log'

Option	Description
PhaseUnits	Units of phase margin, specified as: - ' deg' (default) -
Title, ${ }^{\prime}$ rad '	

See Also

diskmarginplot|wcdiskmarginplot
Introduced in R2020a

diskmarginplot

Visualize disk-based stability margins

Syntax

```
diskmarginplot(L)
diskmarginplot(L1,....,LN)
diskmarginplot(L1,LineSpec1,...,LN,LineSpecN)
diskmarginplot(
```

\qquad

``` , E)
diskmarginplot(___,w)
diskmarginplot(___,opts)
diskmarginplot(DGM)
diskmarginplot(DGM,'disk')
diskmarginplot(DGM,'nyquist')
diskmarginplot(alpha,E,
```

\qquad

```
diskmarginplot(AX,
``` \(\qquad\)
``` )
```


Description

Margins as a Function of Frequency

diskmarginplot(L) plots the disk-based gain and phase margins for the SISO or MIMO negative feedback loop feedback(L,eye(N)), where N is the number of inputs and outputs in the open-loop response L.

For MIMO responses, diskmarginplot plots the multiloop disk margins. The disk-based gain margin at each frequency is $\pm G M$, where $G M$ is the value shown in the plot in dB. Similarly, the diskbased phase margin is $\pm P M$ degrees, where $P M$ is the value shown on the plot. For details about diskbased gain and phase margins, see diskmargin.
diskmarginplot(L1, ...,LN) plots the disk-based gain and phase margins of multiple open-loop responses on the same plot.
diskmarginplot(L1,LineSpec1, ...,LN,LineSpecN) specifies a color, line style, and marker for each system in the plot.
diskmarginplot(\qquad ,E) plots the disk-based gain and phase margins computed using the eccentricity E to bias the gain variation toward gain increase ($E>0$) or gain decrease ($E<0$). If you have used diskmargin to obtain disk-based margins with some particular E, you can use this syntax to see the frequency dependence of the margins at that E value. For $\mathrm{E} \neq 0$, the plotted value is $\mathrm{GM}=$
$\min (g \max , 1 / \max (0, g m i n))$. In other words, the plot shows the largest amount of gain change [1/ $G M, G M$] that fits within the disk-based gain margin [gmin, gmax] of the system at the specified E.
diskmarginplot (__ , w) plots the margins at the frequencies specified by w.

- If w is a cell array of the form $\{w m i n, w m a x\}$, then the plot shows the margins at frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then the plot shows the margins at each specified frequency.
diskmarginplot (__ , opts) uses specified options to customize plot elements such as labels, ticks, and grids. You can use this argument with any of the previous syntaxes.

Range of Gain and Phase Variations

diskmarginplot (DGM) plots the range of simultaneous gain and phase variations corresponding to a disk-based gain margin. The plot also shows the maximum gain-only and phase-only variations (this disk-based gain and phase margins). DGM is a vector of the form [gmin, gmax]. To plot the ranges for multiple disk-based gain margins at once, use a two-column matrix of the form
[gmin1,gmax1; ...;gminN, gmaxN]. For more information about disk-based gain margins, see diskmargin.
diskmarginplot (DGM, 'disk') plots the complex-valued disk of modeled gain and phase variations corresponding to the disk-based gain margin DGM. For details about how disk-margin analysis models gain and phase variations, see "Stability Analysis Using Disk Margins".
diskmarginplot (DGM, ' nyquist') plots the exclusion region in the Nyquist plane corresponding to the disk margin DGM. The requirement that the closed-loop system remain stable for gain or phase variations within the disk corresponding to DGM amounts to a requirement that the open-loop response remain outside a disk-shaped exclusion region in the Nyquist plane. For more information, see "Stability Analysis Using Disk Margins".
diskmarginplot (alpha, E, \ldots) plots the range of gain and phase variations corresponding to the disk size alpha and eccentricity E . If either alpha or E is a vector, then the plot includes the ranges for all specified values. If both alpha and E are vectors, then the plot includes the ranges for the pairs alpha1,E1;...;alphaN,EN.

To plot the modeled uncertainty disk corresponding to alpha, E, use this syntax with the 'disk' flag. To plot the corresponding exclusion disk in the Nyquist plane, use this syntax with the 'nyquist ' flag.

Plot on Specified Axes

diskmarginplot(AX, \qquad) draws a plot on the axes specified by an axes handle (axes or a UIaxes object). Use this argument to specify axes when creating apps in "Develop Apps Using App Designer" (MATLAB). You can use this argument with any of the previous syntaxes to draw any of the plots that diskmarginplot can generate.

Examples

Plot Gain and Phase Margins Versus Frequency

Plot the disk-based gain and phase margins of a system with open loop response L and closed-loop response feedback (L, 1).
$L=t f(25,[1101010])$;
diskmarginplot(L)

Disk-Based Stability Margins

The disk-based gain margin at each frequency is at least \pm GM, where GM is the value shown in the plot in dB. Similarly, the disk-based phase margin is \pm PM degrees. The disk-based margins returned by the diskmargin command are the smallest margins over frequency. (Right-click on the plot and select Characteristics > Minimum Disk Margin for a data tip containing information about these minimum margins.)

Compare Disk Margins of Multiple Systems

Compare the disk-based gain and phase margins of two open-loop responses on the same plot.

```
L1 = tf(25,[1 10 10 10]);
L2 = tf([1 100],[1 10 20 50]);
diskmarginplot(L1,L2)
```


Disk-Based Stability Margins

You can customize the appearance of the plots using the LineSpec argument. Plot the margins again, using a blue dashed line for L1 and red dots for L2.
diskmarginplot(L1,'b--',L2,'r.')

Disk-Based Stability Margins

Combined Gain and Phase Variation

The disk-based gain margins returned by diskmargin assume no phase variation, and the phase margins assume no gain variation. In practice, systems experience both gain and phase variation at the same time. Disk-margin analysis accounts for such simultaneous gain and phase variation.

Compute the disk-based gain and phase margins of a system. Then, use diskmarginplot to visualize the corresponding allowed ranges of simultaneous gain and phase variation.

```
L = tf(25,[1 10 10 10]);
DM = diskmargin(L);
DGM = DM.GainMargin
DGM = 1\times2
    0.6273 1.5942
DPM = DM.PhaseMargin
DPM = 1\times2
    -25.8017 25.8017
diskmarginplot(DGM)
```


The shaded region in the plot shows the range of simultaneous gain and phase variations that preserve the stability of the closed-loop system feedback $(L, 1)$. When there is no phase variation, the system can tolerate the full gain-variation range DGM, from -4 dB to 4 dB . If the phase is allowed to vary by about ± 20 degrees, the allowable gain-variation range drops to about -2.5 dB to 2 dB . At the full phase-variation range of ± 26 degrees, the system can tolerate no gain variation.

To visualize multiple ranges on the same plot, combine them into a two-column vector. For instance, compute the disk margins of L with positive and negative eccentricity and plot all three ranges of variation together.

```
DMn = diskmargin(L,-2);
DGMn = DMn.GainMargin;
DMp = diskmargin(L,2);
DGMp = DMp.GainMargin;
DGMall = [DGMn;DGM;DGMp];
diskmarginplot(DGMall)
```


This plot shows that the feedback loop can tolerate larger gain and phase variations when the gain decreases. In other words, the loop stability is more sensitive to gain increase. For more information about how varying eccentricity affects disk-based gain and phase margin estimates, see "Stability Analysis Using Disk Margins".

Disk of Uncertainty Corresponding to Disk-Based Gain Margin

Disk-based gain-margin analysis models gain and phase variation as an uncertain factor F, multiplying an open-loop gain L. (For details of this model, see "Stability Analysis Using Disk Margins".) The stable range of gain and phase variations returned by the diskmargin command is equivalent to a disk of F values for which the closed loop is stable. When you obtain the disk-based gain and phase margins of a system, you can use diskmarginplot to visualize the corresponding disk of F values.

```
L = tf(25,[1 10 10 10]);
DM = diskmargin(L);
DGM = DM.GainMargin
DGM = 1\times2
    0.6273 1.5942
diskmarginplot(DGM,'disk')
```


The plot shows the values of F in the complex plane, where the x-axis is the real part and the y-axis is the imaginary part. The disk-based gain margin DGM uniquely determines this disk and the corresponding disk-based phase margin, DPM.

Disk Model of Gain and Phase Variation

The uncertainty disk F is parameterized by two values: α, which sets the size of the disk, and E, which biases the gain variation toward gain increase or decrease. This parameterization is given by:
$F=\frac{1+\alpha[(1-E) / 2] \delta}{1-\alpha[(1+E) / 2] \delta^{\prime}}$
where δ is a normalized uncertainty. (For details, see "Stability Analysis Using Disk Margins".) For a given range of gain variation, you can use gm2dm to convert the disk-based gain margin DGM to the α and E values that describe the corresponding disk. diskmarginplot can plot the F disk for a given α, E pair.

```
DGM = [0.8,2]
DGM = 1\times2
    0.8000 2.0000
```

[alpha,E] = gm2dm(DGM);
diskmarginplot(alpha, E,'disk')

In this case, E is greater than zero because the disk-based gain range $\operatorname{DGM}=[0.8,2]$ includes more gain increase than decrease. $E=0$ represents a gain that can increase as much as it can decrease. E <0 represents a range with more decrease than increase. Plot the F disk for different values of E to see how the gain range (the diameter of the disk) varies with E.
$E=[-3,0,3]$;
diskmarginplot(alpha, E, 'disk')

Values of multiplicative factor F

For a fixed E, α controls the size of the disk, and hence the amount of modeled uncertainty. Plot the disk for several values of α at $E=0$.

E = 0;
alpha $=[0.1,0.333,0.5]$;
diskmarginplot(alpha, E,'disk')

Nyquist Plot of Exclusion Disk

As described in "Stability Analysis Using Disk Margins", for a given E, the largest uncertainty disk F for which the closed-loop system feedback ($L^{*} F, 1$) remains stable can be interpreted as an exclusion region that the Nyquist curve of L cannot enter. For any value of E, the exclusion disk contains the critical point $(-1,0)$ and is tangent to the Nyquist curve. The eccentricity adjusts the size and position of the tangent disks. You can use diskmarginplot to visualize these exclusion disks and superimpose them on the Nyquist curve of L.

Compute disk-based gain margins for a system using three different eccentricity values, one corresponding to more gain increase than decrease ($E>0$), one corresponding to more gain decrease than increase ($E<0$), and one balanced ($E=0$).

```
L = tf(25,[1 10 10 10]);
DMdec = diskmargin(L,-2);
DGMdec = DMdec.GainMargin;
DM = diskmargin(L,0);
DGM = DM.GainMargin;
DMinc = diskmargin(L,2);
DGMinc= DMinc.GainMargin;
```

To view the corresponding exclusion regions, plot the Nyquist plots of L and hold the figure. Then use diskmarginplot with the 'nyquist' flag to add the exclusion regions to the plot.
nyquist(L)
hold on
diskmarginplot([DGMdec;DGM;DGMinc], 'nyquist')
hold off

As E increases from -2 to 2, the disks move to the right, and each disk provides lower estimates of the classical gain and phase margins.

Disk Margin Plot with Customized Appearance

Plot the disk margins as a function of frequency of a system with the following open-loop response. $\mathrm{L}=\mathrm{tf}(25,[1101010])$;

For the plot, specify the following attributes:

- Frequency units: Hz
- Gain margins on a log scale, in absolute units
- Grid on
opts = diskmarginoptions;
opts.FreqUnits = 'Hz'; opts.MagScale = 'log'; opts.MagUnits = 'abs';
opts.grid = 'on';
diskmarginplot(L,opts)

Disk-Based Stability Margins

Input Arguments

L - Open-loop response

dynamic system model | model array
Open-loop response, specified as a dynamic system model. L can be SISO or MIMO, as long as it has the same number of inputs and outputs. diskmarginplot plots the disk-based gain and phase margins for the negative-feedback closed-loop system feedback(L, eye(N)).

To plot the margins of the positive feedback system feedback(L,eye(N),+1), use diskmargin (L).

If L is an uncertain state-space model (uss or genss with uncertain blocks), then diskmarginplot plots the margins of random samples of L. To visualize the worst-case stability margins of an uncertain system, use wcdiskmarginplot.

If L is a frequency-response data model (such as $f r d$), then diskmarginplot plots the margins at each frequency represented in the model.

If L is a model array, then diskmarginplot plots the margins for all models in the array on the same axis and in the same line style.

LineSpec - Line style, marker, and color

character vector | string
Line style, marker, and color, specified as a string or vector of one, two, or three characters. The characters can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line. For more information about configuring this argument, see the LineSpec input argument of the plot function.
Example: 'r--' specifies a red dashed line
Example: ' $*$ b' specifies blue asterisk markers
Example: 'y' specifies a yellow line

E - Eccentricity

0 (default) | real scalar | vector
Eccentricity of uncertainty region used to compute the stability margins, specified as a real scalar or vector (for diskmarginplot(alpha, E) plots only).

This parameter biases the uncertainty used to model gain and phase variations toward gain increase or gain decrease.

- The default $\mathrm{E}=0$ uses a balanced model of gain variation in a range [gmin, gmax], with gmin $=$ 1/gmax.
- Positive E uses a model with more gain increase than decrease (gmin > $1 / \mathrm{gmax}$).
- Negative E uses a model with more gain decrease than increase (gmin < 1/gmax).

For more detailed information about how the choice of E affects the margin computation, see "Stability Analysis Using Disk Margins".

Eccentricity in diskmargin(L,E) Syntax

When plotting the gain margins of a dynamic system versus frequency, use the default $\mathrm{E}=0$ to get unbiased estimates of gain and phase margins. For $E=0$, the disk-based gain margin at each frequency is $\pm G M$, where $G M$ is the value shown in the plot in dB .

If you have used diskmargin to obtain disk-based margins with some particular E, you can use this syntax to see the frequency dependence of the margins at that E value. For $\mathrm{E} \neq 0$, the plotted value is GM $=\min (\operatorname{gmax}, 1 / \max (0, g \min))$. In other words, the plot shows the largest amount of gain change [1/GM, GM] that fits within the disk-based gain margin [gmin, gmax] of the system at the specified E.

For the syntax diskmarginplot(L, E), the eccentricity E must be a scalar.

Eccentricity in diskmargin(alpha,E) Syntax

In the syntax diskmargin(alpha, E), the function plots the uncertainty disk parameterized by the values alpha and E (see "Stability Analysis Using Disk Margins"). To convert between disk-based gain margins and alpha, E parameterization, use dm2gm and gm2dm. For this syntax, diskmarginplot enforces the relation alpha*abs (1+E) < 2 .

For this syntax, the eccentricity E can be a vector, allowing you to compare multiple disks on the same plot. If alpha is a scalar and E is a vector, then the plot shows the disks corresponding to the pairs alpha, Ek for each entry in E. If both alpha and E are vectors, then the plot shows the disks for the pairs alpha1, E1; ...;alphaN, EN.

w - Frequencies

\{wmin, wmax\} | vector
Frequencies at which to plot stability margins, specified as the cell array $\{\mathrm{wmin}, \mathrm{wmax}\}$ or as a vector of frequency values.

- If w is a cell array of the form $\{w m i n, w m a x\}$, then the plot shows the margins at frequencies between wmin and wmax.
- If w is a vector of frequencies, then the plot shows the margins at each specified frequency. For example, use logspace to generate a row vector with logarithmically spaced frequency values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of L.

opts - Plot options

diskmarginplot options set
Plot options, specified as a diskmarginplot options set that you create with diskmarginoptions. Elements that you can customize include plot title, axes labels, and grids.

DGM - Disk-based gain margin

two-element vector | two-column matrix
Disk-based gain margin, specified as a two-element vector of the form [gmin, gmax], or a twocolumn matrix of the form [gmin1,gmax1; ...; gminN, gmaxN].

The vector [gmin, gmax], is a disk-based gain margin such as the gain margin you compute with diskmargin. It represents the allowable range of relative variation in open-loop gain such that the closed-loop system remains stable, assuming no phase variation. In DGM, gmin <1 and gmax >1.

Using DGM = [gmin, gmax] plots the allowable range of simultaneous gain and phase variations corresponding to the disk-based gain margin [gmin, gmax]. To show the ranges of several disk-based gain margins on the same plot, use DGM = [gmin1, gmax1; ...;gminN, gmaxN].

You can obtain [gmin, gmax] in the GainMargin field of the output structures of the diskmargin command. You can also obtain [gmin, gmax] from classical gain and phase margins using getDGM.

alpha - Size of gain and phase variation

scalar | vector
Size of modeled gain and phase variation, specified as a scalar or vector. Disk-based gain-margin analysis models gain and phase variation as a multiplicative uncertainty F, which is a disk of values containing $\mathrm{F}=1$, corresponding to the nominal value of the system. The disk is parameterized by
alpha, which sets the size of the disk, and E, which biases the gain variation toward gain increase or decrease. (For details of this model, see "Stability Analysis Using Disk Margins".)
diskmarginplot lets you plot the disk F or the region of gain and phase variations represented by particular alpha, E pairs. For the syntax diskmarginplot (alpha, E), the disk size alpha can be a vector. If alpha is a vector and E is a scalar, then the plot shows the regions corresponding to the pairs alpha_k, E for each entry in alpha. If both alpha and E are vectors, then the plot shows the regions for the pairs alpha1,E1; ...;alphaN,EN.
diskmarginplot enforces the relation alpha*abs $(1+E)<2$. To convert between disk-based gain margins and alpha, E parameterization, use dm2gm and gm2dm.

AX - Axes handle

axes object | UIAxes object
Axes handle, specified as an axes object or a UIaxes object. Use this argument to specify axes when creating apps in "Develop Apps Using App Designer" (MATLAB).

See Also

diskmargin | diskmarginoptions | getDGM|gm2dm | umargin | wcdiskmarginplot

Topics

"Stability Analysis Using Disk Margins"
Introduced in R2020a

dksyn

(Not recommended) Robust controller design for discrete-time plants using μ-synthesis

Note dksyn is not recommended. Use musyn instead. For more information, see "Compatibility Considerations".

Syntax

```
[k,clp,bnd] = dksyn(p,nmeas,ncont)
[k,clp,bnd] = dksyn(p,nmeas,ncont,opt)
[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,...)
[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,prevdkinfo,opt)
    [...] = dksyn(p)
```


Description

[$k, c l p, b n d]=d k s y n(p, n m e a s, n c o n t)$ synthesizes a robust controller k for the uncertain openloop plant model p via the D-K or D-G-K algorithm for μ-synthesis. p is an uncertain state-space uss model. The last nmeas outputs and ncont inputs of p are assumed to be the measurement and control channels. k is the controller, clp is the closed-loop model and bnd is the robust closed-loop performance bound. $\mathrm{p}, \mathrm{k}, \mathrm{clp}$, and bnd are related as follows:

```
clp = lft(p,k);
bnd1 = dksynperf(clp);
bnd = 1/bnd1.LowerBound;
```

[k,clp,bnd] = dksyn(p,nmeas, ncont,opt) specifies user-defined options opt for the D-K or D-K-G algorithm. Use dksynOptions to create opt.
[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,...) returns a log of the algorithm execution in dkinfo. dkinfo is an N-by- 1 cell array where N is the total number of iterations performed. The ith cell contains a structure with the following fields:

Field	Description
K	Controller at ith iteration, a ss object
Bnds	Robust performance bound on the closed-loop system (double)
DL	Left D-scale, an ss object
DR	Right D-scale, an ss object
GM	Offset G-scale, an ss object
GR	Right G-scale, an ss object
GFC	Center G-scale, an ss object
MussvBnds	Upper and lower μ bounds, an frd object

Field	Description
MussvInfo	Structure returned from mussv at each iteration.

[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,prevdkinfo,opt) allows you to use information from a previous dksyn iteration. prevdkinfo is a structure from a previous attempt at designing a robust controller using dksyn. prevdkinfo is used when the dksyn starting iteration is not 1 (opt. StartingIterationNumber $=1$) to determine the correct Dscalings to initiate the iteration procedure.
[...] $=\mathrm{dksyn}(\mathrm{p})$ takes p as a uss object that has two-input/two-output partitioning as defined by mktito.

Examples

The following statements create a robust performance control design for an unstable, uncertain single-input/single-output plant model. The nominal plant model, G, is an unstable first order system
$\frac{s}{s-1}$.
$G=t f\left(1,\left[\begin{array}{ll}1 & -1\end{array}\right)\right.$;
The model itself is uncertain. At low frequency, below 2 rad/s, it can vary up to 25% from its nominal value. Around $2 \mathrm{rad} / \mathrm{s}$ the percentage variation starts to increase and reaches 400% at approximately $32 \mathrm{rad} / \mathrm{s}$. The percentage model uncertainty is represented by the weight Wu which corresponds to the frequency variation of the model uncertainty and the uncertain LTI dynamic object InputUnc.

```
Wu = 0.25*tf([1/2 1],[1/32 1]);
InputUnc = ultidyn('InputUnc',[1 1]);
```

The uncertain plant model Gpert represents the model of the physical system to be controlled.

```
Gpert = G*(1+InputUnc*Wu);
```

The robust stability objective is to synthesize a stabilizing LTI controller for all the plant models parameterized by the uncertain plant model, Gpert. The performance objective is defined as a weighted sensitivity minimization problem. The control interconnection structure is shown in the following figure.

The sensitivity function, S , is defined as

$$
S=\frac{1}{1+P K}
$$

where P is the plant model and K is the controller. A weighted sensitivity minimization problem selects a weight $\mathrm{W} p$, which corresponds to the inverse of the desired sensitivity function of the closedloop system as a function of frequency. Hence the product of the sensitivity weight Wp and actual closed-loop sensitivity function is less than 1 across all frequencies. The sensitivity weight Wp has a gain of 100 at low frequency, begins to decrease at $0.006 \mathrm{rad} / \mathrm{s}$, and reaches a minimum magnitude of 0.25 after $2.4 \mathrm{rad} / \mathrm{s}$.

```
Wp = tf([1/4 0.6],[1 0.006]);
```

The defined sensitivity weight Wp implies that the desired disturbance rejection should be at least 100:1 disturbance rejection at DC, rise slowly between 0.006 and $2.4 \mathrm{rad} / \mathrm{s}$, and allow the disturbance rejection to increase above the open-loop level, 0.25 , at high frequency.

When the plant model is uncertain, the closed-loop performance objective is to achieve the desired sensitivity function for all plant models defined by the uncertain plant model, Gpert. The performance objective for an uncertain system is a robust performance objective. A block diagram of this uncertain closed-loop system illustrating the performance objective (closed-loop transfer function from $d \rightarrow e$) is shown.

From the definition of the robust performance control objective, the weighted, uncertain control design interconnection model, which includes the robustness and performance objectives, can be constructed and is denoted by P . The robustness and performance weights are selected such that if the robust performance structure singular value, bnd, of the closed-loop uncertain system, clp , is less than 1 then the performance objectives have been achieved for all the plant models in the model set.

You can form the uncertain transfer matrix P from $[d ; u]$ to $[e ; y]$ using the following commands.

```
P = [Wp; 1 ]*[1 Gpert];
[K,clp,bnd] = dksyn(P,1,1);
bnd
bnd =
    0.6806
```

The controller K achieves a robust performance μ value bnd of about 0.68 . Therefore you have achieved the robust performance objectives for the given problem.

You can use the robgain command to analyze the closed-loop robust performance of clp.

```
[rpmarg,rpmargunc] = robgain(clp,1);
```


Limitations

There are two shortcomings of the D-K iteration control design procedure:

- Calculation of the structured singular value $\mu \Delta(\cdot)$ is approximated by its upper bound. This is not a serious problem because the value of μ and its upper bound are often close.
- The D-K iteration is not guaranteed to converge to a global, or even local minimum. This is a serious problem, and represents the biggest limitation of the design procedure.

In spite of these drawbacks, the D-K iteration control design technique appears to work well on many engineering problems. It has been applied to a number of real-world applications with success. These applications include vibration suppression for flexible structures, flight control, chemical process control problems, and acoustic reverberation suppression in enclosures.

Algorithms

dksyn synthesizes a robust controller via D-K iteration. The D-K iteration procedure is an approximation to μ-synthesis control design. The objective of μ-synthesis is to minimize the structure singular value μ of the corresponding robust performance problem associated with the uncertain system p. The uncertain system p is an open-loop interconnection containing known components including the nominal plant model, uncertain parameters, ucomplex, and unmodeled LTI dynamics, ultidyn, and performance and uncertainty weighting functions. You use weighting functions to include magnitude and frequency shaping information in the optimization. The control objective is to synthesize a stabilizing controller k that minimizes the robust performance μ value, which corresponds to bnd.

The D-K iteration procedure involves a sequence of minimizations, first over the controller variable K (holding the D variable associated with the scaled μ upper bound fixed), and then over the D variable (holding the controller K variable fixed). The D-K iteration procedure is not guaranteed to converge to the minimum μ value, but often works well in practice.
dksyn automates the D-K iteration procedure and the options object dksynOptions allows you to customize its behavior. Internally, the algorithm works with the generalized scaled plant model P, which is extracted from a uss object using the command lftdata.

The following is a list of what occurs during a single, complete step of the D-K iteration.
1 (In the first iteration, this step is skipped.) The μ calculation (from the previous step) provides a frequency-dependent scaling matrix, D_{f}. The fitting procedure fits these scalings with rational, stable transfer function matrices. After fitting, plots of

$$
\bar{\sigma}\left(\widehat{D}_{f}(j \omega) F_{L}(P, K)(j \omega) D_{f}^{-1}(j \omega)\right)
$$

and
$\bar{\sigma}\left(\widehat{D}_{f}(j \omega) F_{L}(P, K)(j \omega) \widehat{D}_{f}^{-1}(j \omega)\right)$
are shown for comparison.
(In the first iteration, this step is skipped.) The rational \widehat{D} is absorbed into the open-loop interconnection for the next controller synthesis. Using either the previous frequency-dependent D 's or the just-fit rational \widehat{D}, an estimate of an appropriate value for the H_{∞} norm is made. This is simply a conservative value of the scaled closed-loop H_{∞} norm, using the most recent controller and either a frequency sweep (using the frequency-dependent D^{\prime} s) or a state-space calculation (with the rational D 's).

2 (The first iteration begins at this point.) A controller is designed using H_{∞} synthesis on the scaled open-loop interconnection. If you set the DisplayWhileAutoIter field in dksynOptions to ' on ' , the following information is displayed:
a The progress of the γ-iteration is displayed.
b The singular values of the closed-loop frequency response are plotted.
c You are given the option to change the frequency range. If you change it, all relevant frequency responses are automatically recomputed.
d You are given the option to rerun the H_{∞} synthesis with a set of modified parameters if you set the AutoIter field in dksyn0ptions to 'off'. This is convenient if, for instance, the bisection tolerance was too large, or if maximum gamma value was too small.
3 The structured singular value of the closed-loop system is calculated and plotted.
4 An iteration summary is displayed, showing all the controller order, as well as the peak value of μ of the closed-loop frequency responses.
5 The choice of stopping or performing another iteration is given.
Subsequent iterations proceed along the same lines without the need to reenter the iteration number. A summary at the end of each iteration is updated to reflect data from all previous iterations. This often provides valuable information about the progress of the robust controller synthesis procedure.

Interactive Fitting of D-Scalings

Setting the AutoIter field in dksyn0ptions to 'off' requires that you interactively fit the D scales each iteration. During step 2 of the D-K iteration procedure, you are prompted to enter your choice of options for fitting the D-scaling data. You press return after, the following is a list of your options.

```
Enter Choice (return for list):
    Choices:
            nd Move to Next D-scaling
            nb Move to Next D-Block
            i Increment Fit Order
            d Decrement Fit Order
            apf Auto-PreFit
            mx 3 Change Max-Order to 3
            at 1.01 Change Auto-Prefit Tol to 1.01
            0 Fit with zeroth order
            2 Fit with second order
            n Fit with n'th order
            e Exit with Current Fittings
            s See Status
```

- nd and nb allow you to move from one D-scale data to another. nd moves to the next scaling, whereas nb moves to the next scaling block. For scalar D-scalings, these are identical operations, but for problems with full D-scalings, (perturbations of the form δI) they are different. In the $(1,2)$ subplot window, the title displays the D-scaling block number, the row/column of the scaling that is currently being fitted, and the order of the current fit (with d for data when no fit exists).
- You can increment or decrement the order of the current fit (by 1) using i and d.
- apf automatically fits each D-scaling data. The default maximum state order of individual D scaling is 5 . The mx variable allows you to change the maximum D-scaling state order used in the automatic prefitting routine. mx must be a positive, nonzero integer. at allows you to define how close the rational, scaled μ upper bound is to approximate the actual μ upper bound in a norm
sense. Setting at to 1 would require an exact fit of the D-scale data, and is not allowed. Allowable values for at are greater than 1. This setting plays a role (mildly unpredictable, unfortunately) in determining where in the (D, K) space the D-K iteration converges.
- Entering a positive integer at the prompt will fit the current D-scale data with that state order rational transfer function.
- e exits the D-scale fitting to continue the D-K iteration.
- The variable s displays a status of the current and fits.

Compatibility Considerations

dksyn is not recommended

Warns starting in R2020a
The musyn command, introduced in R2019b, performs μ-synthesis with better numeric stability than dksyn and yields better results for real uncertain parameters and for repeated parameters. musyn can also design fixed-structure controllers. Therefore, it is recommended that you use musyn instead of dksyn. Similarly, use musynOptions and musynperf instead of dksynOptions and dksynperf.

References

[1] Balas, G.J., and J.C. Doyle, "Robust control of flexible modes in the controller crossover region," AIAA Journal of Guidance, Dynamics and Control, Vol. 17, no. 2, March-April, 1994, p. 370-377.
[2] Balas, G.J., A.K. Packard, and J.T. Harduvel, "Application of μ-synthesis techniques to momentum management and attitude control of the space station," AIAA Guidance, Navigation and Control Conference, New Orleans, August 1991.
[3] Doyle, J.C., K. Lenz, and A. Packard, "Design examples using μ-synthesis: Space shuttle lateral axis FCS during reentry," NATO ASI Series, Modelling, Robustness, and Sensitivity Reduction in Control Systems, vol. 34, Springer-Verlag, Berlin 1987.
[4] Packard, A., J. Doyle, and G. Balas, "Linear, multivariable robust control with a μ perspective," ASME Journal of Dynamic Systems, Measurement and Control, 50th Anniversary Issue, Vol. 115, no. 2b, June 1993, p. 310-319.
[5] Stein, G., and J. Doyle, "Beyond singular values and loopshapes," AIAA Journal of Guidance and Control, Vol. 14, No. 1, January, 1991, p. 5-16.

See Also

dksynOptions|dksynperf|h2syn|hinfsyn|mktito|mussv|musyn|robgain|robstab| wcdiskmargin|wcgain

Introduced before R2006a

dksynOptions

(Not recommended) Set options for dksyn

Note dksynOptions is not recommended. Use musyn0ptions instead. For more information, see "Compatibility Considerations".

Syntax

opt = dksynOptions
opt $=$ dksynOptions(Name, Value)

Description

opt $=$ dksynOptions returns the default options for dksyn.
opt = dksynOptions(Name,Value) returns an option set with additional options specified by one or more Name, Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
dksynOptions takes the following Name arguments:

FrequencyVector

Frequencies for mu-analysis, specified as a vector. When empty, dksyn automatically chooses the frequency range and number of points.

Default: []

InitialController

Controller for initializing first iteration, specified as a state-space (ss) model.
Default: []

AutoIter

Automated mu-synthesis mode, specified as either 'on' or 'off'. When automated mu-synthesis mode is off, dksyn performs an interactive D-K iteration procedure. You are prompted to fit the Dscale data and provide input on the control design process.

Default: 'on '

DisplayWhileAutoIter

Status of display in automated mu-synthesis mode, specified as either 'off' or 'on'. When the display is on, and automated mu-synthesis mode is active, dksyn displays the iteration progress during the synthesis computation.

Default: 'off'

StartingIterationNumber

Iteration number for initiating iteration procedure, specified as a positive integer. Use this option when you provide the prevdkinfo argument to dksyn to use information from a previous dksyn calculation. In this case, specify the starting iteration number from which to resume the iteration procedure.

Default: 1

NumberOfAutoIterations

Number of iterations to perform in automatic mu-synthesis mode, specified as a positive integer.
Default: 10

MixedMU

Flag indicating whether to perform mixed real/complex mu-synthesis when real parameters are present, specified as either 'off' or 'on'. Mixed mu-synthesis accounts for uncertain real parameters directly in the synthesis process. Setting 'MixedMU ' to ' on ' when you have uncertain real parameters can result in improved robust performance of the synthesized controller.

Default: 'off'

AutoScalingOrder

State order for fitting D-scaling and G-scaling data for real/complex mu-synthesis, specified as a vector of the form [dorder, gorder].

Default: [5 2] (5th-order D-scalings and 2nd-order G-scalings)

AutoIterSmartTerminate

Automatic termination mode, specified as either 'on' or 'off'. When AutoIterSmartTerminate is 'on' , the iteration procedure terminates based on the progress of the design iteration. Set the tolerance for automatic termination using AutoIterSmartTerminateTol.

In automatic termination mode, the iteration procedure terminates when a stopping criterion is satisfied. The stopping criterion involves the objective value (peak value, across frequency, of the upper bound for μ) in the current iteration, denoted v_{0}. The stopping criterion also involves the objective value in the previous two iterations, denoted v_{-1} and v_{-2}. The stopping criterion is satisfied for lack of progress if:

$$
\left|v_{0}-v_{-1}\right|<\text { AutoIterSmartTerminateTol } * v_{0},
$$

and

$$
\left|v_{-1}-v_{-2}\right|<\text { AutoIterSmartTerminateTol } * v_{0} .
$$

The stopping criteria is also satisfied for an undesirable significant increase in the objective value if:

$$
v_{0}>v_{-1}+20 * \text { AutoIterSmartTerminateTol } * v_{0}
$$

Default: ' on '

AutoIterSmartTerminateTol

Tolerance for AutoIterSmartTerminate mode.
Default: 0.005

Output Arguments

options

Option set containing the specified options for the dksyn command.

Examples

Create Options Set for dksyn

Create an options set for a dksyn run using a logarithmic distribution of frequency points for analysis and performing 24 iterations.

```
options = dksyn0ptions('FrequencyVector',logspace(-2,3,80),\ldots
    'NumberOfAutoIterations',24);
```

Alternatively, use dot notation to set the values of options.

```
options = dksynOptions;
options.FrequencyVector = logspace(-2,3,80);
options.NumberOfAutoIterations = 24;
```


Compatibility Considerations

dksynOptions is not recommended

Not recommended starting in R2020a
The musyn command, introduced in R2019b, performs μ-synthesis with better numeric stability than dksyn and yields better results for real uncertain parameters and for repeated parameters. musyn can also design fixed-structure controllers. Therefore, it is recommended that you use musyn instead of dksyn. Similarly, use musyn0ptions and musynperf instead of dksyn0ptions and dksynperf.

See Also

dksyn|musyn0ptions

Introduced in R2013a

dksynperf

(Not recommended) Robust H_{∞} performance optimized by dksyn

Note dksynperf is not recommended. Use musynperf instead. For more information, see "Compatibility Considerations".

Syntax

[gamma,wcu] = dksynperf(clp)
[gamma,wcu] = dksynperf(clp,w)
[gamma,wcu] = dksynperf(__,opts)
[gamma,wcu,info] = dksynperf(___)

Description

The robust H_{∞} performance (or robust H_{∞} norm) of an uncertain closed-loop system is the smallest value γ such that the I/O gain of the system stays below γ for all modeled uncertainty up to size $1 / \gamma$ (in normalized units). The dksyn function synthesizes a robust controller by minimizing this quantity over all possible choices of controller. dksynperf computes this quantity for a specified uncertain model.
[gamma,wcu] = dksynperf(clp) calculates the robust H_{∞} performance for an uncertain closedloop system, clp . The robust H_{∞} performance is the smallest value γ for which the peak I/O gain stays below γ for all modeled uncertainty up to $1 / \gamma$, in normalized units. For example, a value of $\gamma=$ 1.125 implies the following:

- The I/O gain of clp remains less than 1.125 as long as the uncertain elements stay within 0.8 normalized units of their nominal values. In other words, for uncertain element values within 0.8 normalized units, the largest possible H_{∞} norm is 1.125 .
- There is a perturbation of size 0.8 normalized units that drives the peak I/O gain to 1.125.

The peak I/O gain is the maximum I/O gain over all inputs, which is also the peak of the largest singular value over all frequencies and uncertainties. In other words, if Δ represents all possible values of the uncertain parameters in the closed-loop transfer function CLP(j ω), then

$$
\gamma=\max _{\Delta} \max _{\omega} \sigma_{\max }(C L P(j \omega)) .
$$

The output structure gamma contains upper and lower bounds on the robust H_{∞} performance and the critical frequency at which the I/O gain of clp reaches the lower bound. The structure wcu contains the uncertain-element values that drive the peak I/O gain to the lower bound.
[gamma,wcu] = dksynperf(clp,w) computes the robust H_{∞} performance at the frequencies specified by w.

- If w is a cell array of the form $\{\mathrm{wmin}, \mathrm{wmax}\}$, then dksynperf restricts the computation to the interval between wmin and wmax.
- If w is a vector of frequencies, then dksynperf computes the H_{∞} performance at the specified frequencies only.
[gamma,wcu] = dksynperf(__ , opts) specifies additional options for the computation. Use rob0ptions to create opts. You can use this syntax with any of the previous input-argument combinations.
[gamma,wcu,info] = dksynperf(__) returns a structure with additional information about the H_{∞} performance values and the perturbations that drive the I/O gain to γ. See info for details about this structure. You can use this syntax with any of the previous input-argument combinations.

Examples

Reduce Synthesized Controller While Preserving Robust Performance

When you use dksyn to synthesize an unstructured robust controller, the resulting controller often is of higher order than is necessary to achieve the desired robust performance. One way to mitigate this problem is to perform model reduction, using dksynperf to test the robust performance of the reduced-order controller.

Synthesize a controller for the system described in the dksyn example.

```
G = tf(1,[1 -1]);
Wu = 0.25*tf([1/2 1],[1/32 1]);
InputUnc = ultidyn('InputUnc',[1 1]);
Gpert = G*(1+InputUnc*Wu);
Wp = tf([1/4 0.6],[1 0.006]);
P = [Wp; 1 ]*[1 Gpert];
[K,clp,clperf] = dksyn(P,1,1);
N = order(K)
N = 7
```

dksyn returns a 7th-order controller, the closed-loop system with that controller, clp, and the robust H_{∞} performance of that system, clperf. Compute reduced-order controllers for orders ranging from 1 to 7.

Kred $=$ reduce $(\mathrm{K}, 1: \mathrm{N})$;
Find the lowest-order controller Klow with performance no worse than $1.05 *$ clperf, or 5\% degradation compared to the full-order controller.

```
for k=1:N
    Klow = Kred(:,:,k);
    clp = lft(P,Klow);
    [gamma,~] = dksynperf(clp);
    if gamma.UpperBound < 1.05*clperf
        break
    end
end
order(Klow)
ans = 3
```

To validate the reduced-order controller, compare the robust H_{∞} performance of the system using the simplified controller with that of the system using the full-order controller. The latter value is clperf, returned by dksyn when synthesizing the controller.

```
clplow = lft(P,Klow);
dksynperf(clplow)
ans = struct with fields:
    LowerBound: 0.7116
    UpperBound: 0.7131
    CriticalFrequency: 0.7408
```

clperf
clperf = 0.6816

The third-order controller achieves almost the same robust H_{∞} performance as the 7th-order controller returned by dksyn.

Input Arguments

```
clp - Closed-loop uncertain system
uss | ufrd | genss | genfrd
```

Closed-loop uncertain system, specified as a uss, ufrd, genss, or genfrd model that contains uncertain elements. For genss or genfrd models, dksynperf uses the current value of any tunable blocks and folds them into the known (not uncertain) part of the model.

w- Frequencies

\{wmin, wmax\} | vector
Frequencies at which to compute robust H_{∞} performance, specified as the cell array \{wmin, wmax\} or as a vector of frequency values.

- If w is a cell array of the form $\{w m i n, w m a x\}$, then the function computes the H_{∞} performance at frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then the function computes the H_{∞} performance at each specified frequency. For example, use logspace to generate a row vector with logarithmically spaced frequency values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the model.

opts - Options for \boldsymbol{H}_{∞} performance computation

robOptions object
Options for computation of robust H_{∞} performance, specified as an object you create with robOptions. The available options include settings that let you:

- Extract frequency-dependent H_{∞} performance values.
- Examine the sensitivity of the H_{∞} performance to each uncertain element.
- Improve the results of the calculation by setting certain options for the underlying mussv calculation. In particular, setting the option 'MussvOptions' to ' mN ' can reduce the gap between the lower bound and upper bound. N is the number of restarts.

For more information about all available options, see robOptions.

Example: rob0ptions('Sensitivity','on','Mussv0ptions','m3')

Output Arguments

gamma - Robust \boldsymbol{H}_{∞} performance and critical frequency

structure
Robust H_{∞} performance and critical frequency, returned as a structure containing the following fields:

Field	Description
LowerBound	Lower bound on the actual robust H_{∞} performance γ, returned as a scalar value. The exact value of γ is guaranteed to be no smaller than LowerBound. In other words, there exist some uncertain-element values of magnitude 1/LowerBound for which the I/O gain of clp reaches LowerBound. The function returns one such instance in wcu.
UpperBound	Upper bound on the actual robust H_{∞} performance, returned as a scalar value. The exact value is guaranteed to be no larger than UpperBound. In other words, for all modeled uncertainty with normalized magnitude up to $1 /$ UpperBound, the peak I/O gain of clp is less than UpperBound.
CriticalFrequency	Frequency at which the I/O gain reaches LowerBound, in rad/TimeUnit, where TimeUnit is the TimeUnit property of clp.

Use normalized2actual to convert the normalized uncertainty values 1/LowerBound or 1/ UpperBound to actual deviations from nominal values.

wcu - Perturbations driving I/O gain to gamma. LowerBound
 structure

Perturbations driving I/O gain to gamma. LowerBound, returned as a structure whose fields are the names of the uncertain elements of $c l p$. Each field contains the actual value of the corresponding uncertain element. For example, if clp includes an uncertain matrix M and SISO uncertain dynamics delta, then wcu.M is a numeric matrix and wcu.delta is a SISO state-space model.

Use usubs ($c l p, w c u$) to substitute these values for the uncertain elements in $c l p$ and obtain the corresponding dynamic system. This system has peak gain gamma. LowerBound.

Use actual2normalized to convert these actual uncertainty values to the normalized units in which $1 /$ gamma. LowerBound or $1 /$ gamma.UpperBound are expressed.

info - Additional information about $\boldsymbol{\gamma}$ values

structure
Additional information about the γ values, returned as a structure with the following fields:

Field	Description
Frequency	Frequency points at which dksynperf returns γ values, returned as a vector. - If the 'VaryFrequency' option of robOptions is 'off', then info. Frequency is the critical frequency, the frequency at which the I/O gain reaches gamma. LowerBound. If the smallest lower bound and the smallest upper bound on γ occur at different frequencies, then info. Frequency is a vector containing these two frequencies. - If the 'VaryFrequency' option of robOptions is ' on ' , then info. Frequency contains the frequencies selected by dksynperf. These frequencies are guaranteed to include the frequency at which the peak gain occurs. - If you specify a vector of frequencies w at which to compute γ, then info. Frequency $=\omega$. When you specify a frequency vector, these frequencies are not guaranteed to include the frequency at which the peak gain occurs. The 'VaryFrequency ' option is meaningful only for uss and genss models. dksynperf ignores the option for ufrd and genfrd models.
Bounds	Lower and upper bounds on the actual γ values, returned as an array. info.Bounds $(:, 1)$ contains the lower bound at each corresponding frequency in info. Frequency, and info. Bounds (: , 2) contains the corresponding upper bounds.
WorstPerturbation	Smallest perturbations at each frequency point in info. Frequency, returned as a structure array. The fields of info. WorstPerturbation are the names of the uncertain elements in clp. Each field contains the value of the corresponding element that drives the I/O gain to the corresponding lower bound at each frequency. For example, if $c l p$ includes an uncertain parameter p and SISO uncertain dynamics delta, then info. WorstPerturbation.p is a collection of numeric values and info. WorstPerturbation.delta is a collection of SISO state-space models.

Field

Description

Sensitivity of γ to each uncertain element, returned as a structure when the 'Sensitivity' option of robOptions is 'on'. The fields of info. Sensitivity are the names of the uncertain elements in clp. Each field contains a percentage that measures how much the uncertainty in the corresponding element affects γ. For example, if info. Sensitivity.p is 50, then a given fractional change in the uncertainty range of p causes half as much fractional change in γ.

If the 'Sensitivity' option of rob0ptions is off (the default setting), then info. Sensitivity is NaN .

Compatibility Considerations

dksynperf is not recommended
Not recommended starting in R2020a
The musynperf command, introduced in R2019b, computes robust H_{∞} performance with better numeric stability than dksynperf and yields better results for real uncertain parameters and for repeated parameters. Therefore, it is recommended that you use musynperf instead of dksynperf.

```
See Also
actual2normalized| dksyn|musynperf| normalized2actual| rob0ptions|robgain|
robstab|wcgain
```

Introduced in R2017a

dm2gm

Get disk-based margins from disk size and eccentricity

Syntax

[GM,PM] = dm2gm(alpha)
[DGM,DPM] = dm2gm(alpha,E)

Description

umargin and diskmargin model gain and phase variation as a multiplicative factor $F(s)$ taking values in a disk centered on the real axis. The disk is described by two parameters: α, which sets the size of the variation, and E, or eccentricity, which biases the gain variation toward increase or decrease. (See "Algorithms" on page 1-107 for more details about this model.) The disk can alternatively be described by its real-axis intercepts DGM = [gmin, gmax], which represent the relative amount of gain variation around the nominal value $F=1$. Use gm2dm and dm2gm to convert between the α, E values and the disk-based gain margin DGM $=$ [gmin, gmax] that describe the same disk.
[GM, PM] = dm2gm(alpha) returns the gain and phase variations modeled by the disk with disk-size alpha and zero eccentricity. The disk represents a gain that can vary between 1/GM and GM times the nominal value, and a phase that can vary by $\pm P M$ degrees. If alpha is a vector, the function returns GM and PM for each entry in the vector.
[DGM, DPM] $=$ dm2gm(alpha,E) returns the disk-based gain variation DGM and disk-based phase variation DPM corresponding to the disk parameterized by alpha and E. DPM is a vector of the form [gmin, gmax], and DPM is a vector of the form [-pm, pm] corresponding to the disk size alpha and eccentricity E . If alpha and E are vectors, then the function returns the ranges for the pairs
alpha1,E1; ...;alphaN,EN.

Examples

Gain and Phase Variations Corresponding to Given Disk Size

Determine disk-based gain and phase variations captured by a disk with size $\alpha=0.5$.

```
alpha = 0.5;
[GM,PM] = dm2gm(alpha)
GM = 1.6667
PM = 28.0725
```

When you omit E , the dm2gm command returns the gain and phase variations corresponding to α with zero eccentricity. Zero eccentricity means that the disk represents gain that can increase or decrease by the same amount. In this case, $\alpha=0.5$ models a gain that can increase or decrease by up to a factor 1.6667 of its nominal value. The phase variation corresponding to this disk-based gain variation is $\pm 28^{\circ}$. Visualize this disk.

```
diskmarginplot(alpha,0,'disk')
```


The plot shows the values of F in complex plane corresponding to disk size alpha $=0.5$ and $\mathrm{E}=0$. You can see that DGM $=[1 / G M, G M]$ for this disk.

Disk-Based Margins Corresponding to Disk Size and Eccentricity

Determine the disk-based gain and phase variations modeled by the disk parameterized by disk size α $=0.6$ and eccentricity $E=0.75$.
alpha = 0.6;
$\mathrm{E}=0.75$;
[DGM, DPM] = dm2gm(alpha,E)
DGM $=1 \times 2$
$0.6066 \quad 2.2632$

DPM $=1 \times 2$
-34.2267 34.2267

Visualize the gain and phase variations represented by this disk.
diskmarginplot(DGM)

Because $E>0$, this disk models a gain that can increase more than it can decrease relative to the nominal value.

Effect of Eccentricity on Modeled Gain and Phase Variations

Determine the disk-based gain and phase variations represented by disks of the same size but with different eccentricities.
alpha $=0.75$;
E = [-0.5;0;0.5];
[DGM, DPM] = dm2gm(alpha,E)
DGM $=3 \times 2$
$0.3684 \quad 1.9231$
$0.4545 \quad 2.2000$
$0.5200 \quad 2.7143$

DPM $=3 \times 2$
-41.7908
41.7908
-41.1121
41.1121
-41.7908
41.7908

The disks capture roughly similar phase variations, but the eccentricity biases the disk toward gain decrease or increase. For the disk with zero eccentricity, the gain variation is balanced, and meaning that gain can increase or decrease by the same amount. To Visualize the simultaneous range of gain and phase variations corresponding to each row in DGM.
diskmarginplot(DGM)

Input Arguments

alpha - Size of gain and phase variation

scalar | vector
Disk size, specified as a scalar or vector. Disk-based gain-margin analysis represents gain and phase variation as a multiplicative uncertainty F, which is a disk of values containing $F=1$, corresponding to the nominal value of the system. The disk is parameterized by alpha, which sets the size of the disk, and E , which biases the gain variation toward gain increase or decrease. See "Algorithms" on page 1-107 for details about the meaning of alpha.

To obtain gain and phase variations corresponding to multiple disk sizes, specify alpha as a vector.

E - Eccentricity
 real scalar | vector

Eccentricity, specified as a scalar or vector. The eccentricity skews the modeled gain variation toward gain increase or decrease.

- $E=0$ for a balanced gain range [gmin, gmax], with gmin $=1 /$ gmax.
- E is positive for a varying gain that can increase more than it can decrease, gmax $>1 /$ gmin.
- E is negative for a varying gain that can decrease more than it can increase, gmin $<1 /$ gmax.

The more the gain range is skewed, the larger the absolute value of E. For additional details about the meaning of E, see "Algorithms" on page 1-107.

To obtain gain and phase variations corresponding to multiple disks of varying eccentricity, specify E as a vector.

Output Arguments

GM - Amount of gain increase or decrease

scalar | column vector
Amount of gain increase or decrease in absolute units, returned as a real scalar or a vector.

- If alpha is a real scalar and you omit E, then dm2gm returns a scalar GM such that the disk of size alpha models a symmetric gain variation in the range [1/GM, GM] and the corresponding phase variation, [$-\mathrm{PM}, \mathrm{PM}$]. For instance, $\mathrm{GM}=2$ means that the disk models a gain that can increase or decrease by a factor of 2 .
- If alpha is a vector of form [alpha1; ...;alphaN] and you omit E, the function returns GM as a column vector of the corresponding amounts of gain increase or decrease.

PM - Amount of phase variation

scalar | column vector
Amount of phase variation in degrees, returned as a real scalar or a vector.

- If alpha is a real scalar and you omit E, then dm2gm returns a scalar PM such that the disk of size alpha models a symmetric gain variation in the range [1/GM,GM] and the corresponding phase variation, [-PM, PM]. For instance, $\mathrm{PM}=20$ means that the disk models a phase that can increase or decrease by 20°.
- If alpha is a vector of form [alpha1; .. ; alphaN] and you omit E, the function returns PM as a column vector of the corresponding amounts of phase variation.

DGM - Range of relative gain variation

two-element vector | two-column matrix
Range of relative gain variation, returned as a two-element vector of the form [gmin, gmax], where gmin <1 and gmax >1. For instance, $D G M=\left[\begin{array}{ll}0.8 & 1.5\end{array}\right]$ represents a gain that can vary between 80% and 150% of its nominal value (that is, change by a factor between 0.8 and 1.5). DGM is the gain variation modeled by the disk parameterized by the input arguments alpha and E. It is the range in which the disk crosses the real axis. gmin can be negative for large negative values of E, defining a range of relative gain variation that includes a change in sign. For more information about the diskbased uncertainty model, see "Algorithms" on page 1-107.

You can use DGM to create a umargin object that represents the gain and phase uncertainty described by the disk. You can visualize the disk and the associated gain and phase variations using diskmarginplot.

If alpha and E are vectors, then DGM is a two-column matrix of the form
[gmin1,gmax1; ...;gminN,gmaxN], where each row is the disk-based gain range corresponding to [alpha1,E1; ...;alphaN,EN].

DPM - Disk-based phase variation

two-element vector | two-column matrix
Disk-based phase variation, returned as a two-element vector or a two-column matrix.
The vector DPM $=[-\mathrm{pm}, \mathrm{pm}]$, represents the relative phase variation amount determined by the geometry of the disk described by alpha and E. For more information, see "Algorithms" on page 1107.

If alpha and E are vectors, then DPM is a two-column matrix of the form [-pm1,pm1; ...;$\mathrm{pmN}, \mathrm{pmN}]$, where each row is the phase variation corresponding to [alpha1,E1; ...;alphaN,EN].

Algorithms

umargin and diskmargin model gain and phase variations in an individual feedback channel as a frequency-dependent multiplicative factor $F(s)$ multiplying the nominal open-loop response $L(s)$, such that the perturbed response is $L(s) F(s)$. The factor $F(s)$ is parameterized by:

$$
F(s)=\frac{1+\alpha[(1-E) / 2] \delta(s)}{1-\alpha[(1+E) / 2] \delta(s)} .
$$

In this model,

- $\delta(s)$ is a gain-bounded dynamic uncertainty, normalized so that it always varies within the unit disk $\left(\|\delta\|_{\infty}<1\right)$.
- α sets the amount of gain and phase variation modeled by F. For fixed E, the parameter α controls the size of the disk. For $\alpha=0$, the multiplicative factor is 1 , corresponding to the nominal L.
- E, called the eccentricity, skews the modeled uncertainty toward gain increase or gain decrease.

The factor F takes values in a disk centered on the real axis and containing the nominal value $F=1$. The disk is characterized by its intercept DGM = [gmin, gmax] with the real axis. gmin <1 and gmin >1 are the minimum and maximum relative changes in gain modeled by F, at nominal phase. The phase uncertainty modeled by F is the range DPM $=[-\mathrm{pm}, \mathrm{pm}]$ of phase values at the nominal gain $(|F|=1)$. For instance, in the following plot, the right side shows the disk F that intersects the real axis in the interval [0.71,1.4]. The left side shows that this disk models a gain variation of $\pm 3 \mathrm{~dB}$ and a phase variation of $\pm 19^{\circ}$.

```
DGM = [0.71,1.4]
F = umargin('F',DGM)
plot(F)
```


gm2dm and gm2dm converts between these two ways of specifying a disk of multiplicative gain and phase uncertainty: a gain-variation range of the form DGM $=$ [gmin, gmax], and the α, E parameterization of the corresponding disk.

For further details about the uncertainty model for gain and phase variations, see "Stability Analysis Using Disk Margins".

See Also

diskmargin | diskmarginplot | gm2dm | umargin | wcdiskmargin

Introduced in R2020a

dmplot

(Not recommended) Interpret disk gain and phase margins

Note dmplot is not recommended. Use diskmarginplot instead.

Syntax

```
dmplot
dmplot(diskgm)
[dgm,dpm] = dmplot
```


Description

dmplot brings up a plot that illustrates the disk gain margin (dgm) and disk phase margin (dpm) for a sample system. Both margins are derived from the largest disk that

- Contains the critical point $(-1,0)$
- Does not intersect the Nyquist plot of the open-loop response L
diskgm is the radius of this disk and a lower bound on the classical gain margin.
dmplot(diskgm) plots the maximum allowable phase variation as a function of the actual gain variation for a given disk gain margin diskgm (the maximum gain variation being diskgm). The closed-loop system is guaranteed to remain stable for all combined gain/phase variations inside the plotted ellipse.
[dgm,dpm] = dmplot returns the data used to plot the gain/phase variation ellipse.

Examples

Disk Gain and Phase Margins

When you call dmplot without an argument, the resulting plot and text shows a comparison of a disk margin analysis with the classical notations of gain and phase margins. The Nyquist plot is of the loop transfer function L(s):

$$
\begin{aligned}
& \qquad L(s)=\frac{\frac{s}{30}+1}{(s+1)\left(s^{2}+1.6 s+16\right)} \text {. } \\
& \text { dmplot } \\
& \text { This figure shows a comparison of a disk margin analysis } \\
& \text { with the classical notations of gain and phase margins. } \\
& \text { The Nyquist plot is of the loop transfer function }
\end{aligned}
$$

$$
\mathrm{L}=4(\mathrm{~s} / 30+1) /\left((\mathrm{s}+1) *\left(\mathrm{~s}^{\wedge} 2+1.6 s+16\right)\right)
$$

- The Nyquist plot of L corresponds to the blue line
- The unit disk corresponds to the dotted red line
- GM and PM indicate the location of the classical gain and phase margins for the system L.
- DGM and DPM correspond to the disk gain and phase margins. The disk margins provide a lower bound on classical gain and phase margins.
- The disk margin circle corresponds to the dashed black line. The disk margin corresponds to the largest disk centered at (GMD + 1/GMD)/2 that just touches the loop transfer function L. This location is indicated by the red dot.

The x-axis corresponds to the gain variation in $d B$ and the y-axis corresponds to the allowable phase variation in degrees. For a disk gain margin corresponding to $3 \mathrm{~dB}(1.414)$, the closed-loop system is stable for all phase and gain variations inside the blue ellipse. For example, the closed-loop system can simultaneously tolerate $+/-2 \mathrm{~dB}$ gain variation and $+/-14$ deg phase variations. To see the allowable variations for a given disk gain margin, use the given value as an input to dmplot.

```
figure % new figure window
dmplot(1.414)
```


Compatibility Considerations

dmplot is not recommended

Not recommended starting in R2020a
dmplot is not recommended. Use diskmarginplot instead.

References

Barrett, M.F., Conservatism with robustness tests for linear feedback control systems, Ph.D. Thesis. Control Science and Dynamical Systems, University of Minnesota, 1980.

Blight, J.D., R.L. Dailey, and Gangsass, D., "Practical control law design for aircraft using multivariable techniques," International Journal of Control, Vol. 59, No. 1, 1994, 93-137.

Bates, D., and I. Postlethwaite, Robust Multivariable Control of Aerospace Systems, Delft University Press, Delft, The Netherlands, ISBN: 90-407-2317-6, 2002.

See Also

wcdiskmargin

Introduced before R2006a

evallmi

Given particular instance of decision variables, evaluate all variable terms in system of LMIs

Syntax

evalsys = evallmi(lmisys,decvars)

Description

evallmi evaluates all LMI constraints for a particular instance decvars of the vector of decision variables. Recall that decvars fully determines the values of the matrix variables X_{1}, \ldots, X_{K}. The "evaluation" consists of replacing all terms involving X_{1}, \ldots, X_{K} by their matrix value. The output evalsys is an LMI system containing only constant terms.

The function evallmi is useful for validation of the LMI solvers' output. The vector returned by these solvers can be fed directly to evallmi to evaluate all variable terms. The matrix values of the left and right sides of each LMI are then returned by showlmi.

Observation

evallmi is meant to operate on the output of the LMI solvers. To evaluate all LMIs for particular instances of the matrix variables X_{1}, \ldots, X_{K}, first form the corresponding decision vector x with mat2dec and then call evallmi with x as input.

Examples

Consider the feasibility problem of finding $X>0$ such that
$\begin{array}{cccccc}A^{T} X A & - & X & \\ & + & 0 & 0\end{array}$
where

$$
A=\left(\begin{array}{ll}
0.5 & -0.2 \\
0.1 & -0.7
\end{array}\right)
$$

This LMI system is defined by:

```
setlmis([])
lmiterm([1 1 1 1 0],1) % LMI #1: I
lmiterm([-2 1 1 X],1,1) % LMI #2: X
lmis = getlmis
To compute a solution xfeas, call feasp by
```

```
[tmin,xfeas] = feasp(lmis)
```

```
[tmin,xfeas] = feasp(lmis)
```

$X=\operatorname{lmivar}(1,[21]) \quad \%$ full symmetric X
lmiterm([1 $\left.11 \begin{array}{l}\text { X }\end{array}, A^{\prime}, A\right) \quad$ \% LMI \#1: $A^{\prime} * X * A$
lmiterm([1 $111 \times],-1,1) \quad$ L LMI \#1: -X

The result is

```
tmin =
    -4.7117e+00
xfeas' =
    1.1029e+02 -1.1519e+01 1.1942e+02
```

The LMI constraints are therefore feasible since tmin <0. The solution X corresponding to the feasible decision vector xfeas would be given by $X=$ dec2mat(lmis,xfeas, X).

To check that xfeas is indeed feasible, evaluate all LMI constraints by typing

```
evals = evallmi(lmis,xfeas)
```

The left and right sides of the first and second LMIs are then given by

```
[lhs1,rhs1] = showlmi(evals,1)
[lhs2,rhs2] = showlmi(evals,2)
```

and the test
eig(lhs1-rhs1)
ans =
$-8.2229 e+01$
$-5.8163 e+01$
confirms that the first LMI constraint is satisfied by xfeas.

See Also

dec2mat | mat2dec | setmvar | showlmi
Introduced before R2006a

feasp

Compute solution to given system of LMIs

Syntax

[tmin,xfeas] = feasp(lmisys,options,target)

Description

The function feasp computes a solution xfeas (if any) of the system of LMIs described by lmisys. The vector xfeas is a particular value of the decision variables for which all LMIs are satisfied.

Given the LMI system
$N^{T} L x N \leq M^{T} R(x) M$,
xfeas is computed by solving the auxiliary convex program:
Minimize t subject to $N^{T} L(x) N-M^{T} R(\mathrm{x}) M \leq t I$.
The global minimum of this program is the scalar value tmin returned as first output argument by feasp. The LMI constraints are feasible if $\operatorname{tmin} \leq 0$ and strictly feasible if $\operatorname{tmin}<0$. If the problem is feasible but not strictly feasible, tmin is positive and very small. Some post-analysis may then be required to decide whether xfeas is close enough to feasible.

The optional argument target sets a target value for tmin. The optimization code terminates as soon as a value of t below this target is reached. The default value is target $=0$.

Note that xfeas is a solution in terms of the decision variables and not in terms of the matrix variables of the problem. Use dec2mat to derive feasible values of the matrix variables from xfeas.

Control Parameters

The optional argument options gives access to certain control parameters for the optimization algorithm. This five-entry vector is organized as follows:

- options(1) is not used.
- options (2) sets the maximum number of iterations allowed to be performed by the optimization procedure (100 by default).
- options (3) resets the feasibility radius. Setting options (3) to a value $R>0$ further constrains the decision vector $x=\left(x_{1}, \ldots, x_{N}\right)$ to lie within the ball

$$
\sum_{i=1}^{N} x_{i}^{2}<R^{2}
$$

In other words, the Euclidean norm of xfeas should not exceed R. The feasibility radius is a simple means of controlling the magnitude of solutions. Upon termination, feasp displays the f radius saturation, that is, the norm of the solution as a percentage of the feasibility radius R.

The default value is $R=109$. Setting options (3) to a negative value activates the "flexible bound" mode. In this mode, the feasibility radius is initially set to 108, and increased if necessary during the course of optimization

- options (4) helps speed up termination. When set to an integer value $J>0$, the code terminates if t did not decrease by more than one percent in relative terms during the last J iterations. The default value is 10 . This parameter trades off speed vs. accuracy. If set to a small value (<10), the code terminates quickly but without guarantee of accuracy. On the contrary, a large value results in natural convergence at the expense of a possibly large number of iterations.
- options (5) = 1 turns off the trace of execution of the optimization procedure. Resetting options (5) to zero (default value) turns it back on.

Setting option(i) to zero is equivalent to setting the corresponding control parameter to its default value. Consequently, there is no need to redefine the entire vector when changing just one control parameter. To set the maximum number of iterations to 10 , for instance, it suffices to type

```
options=zeros(1,5) % default value for all parameters
```

options(2)=10

Memory Problems

When the least-squares problem solved at each iteration becomes ill conditioned, the feasp solver switches from Cholesky-based to QR-based linear algebra (see "Memory Problems" on page 1-311 for details). Since the QR mode typically requires much more memory, MATLAB ${ }^{\circledR}$ may run out of memory and display the message

```
??? Error using ==> feaslv
Out of memory. Type HELP MEMORY for your options.
```

You should then ask your system manager to increase your swap space or, if no additional swap space is available, set options(4) = 1 . This will prevent switching to QR and feasp will terminate when Cholesky fails due to numerical instabilities.

Examples

Solve System of LMIs

Consider the problem of finding $P>I$ such that:

$$
\begin{aligned}
& A_{1}^{T} P+P A_{1}<0, \\
& A_{2}^{T} P+P A_{2}<0, \\
& A_{3}^{T} P+P A_{3}<0,
\end{aligned}
$$

with data

$$
A_{1}=\left(\begin{array}{cc}
-1 & 2 \\
1 & -3
\end{array}\right), A_{2}=\left(\begin{array}{cc}
-0.8 & 1.5 \\
1.3 & -2.7
\end{array}\right), A_{3}=\left(\begin{array}{cc}
-1.4 & 0.9 \\
0.7 & -2.0
\end{array}\right) .
$$

This problem arises when studying the quadratic stability of the polytope of the matrices, $\operatorname{Co}\left\{A_{1}, A_{2}, A_{3}\right\}$.

To assess feasibility using feasp, first enter the LMIs.

```
setlmis([])
p = lmivar(1,[2 1]);
A1 = [-1 2;1 -3];
A2 = [-0.8 1.5; 1.3 -2.7];
A3 = [-1.4 0.9;0.7 -2.0];
lmiterm([1 1 1 1 p],1,A1,'s'); % LMI #1
lmiterm([2 1 1 p],1,A2,'s'); % LMI #2
lmiterm([3 1 1 p],1,A3,'s'); % LMI #3
lmiterm([-4 1 1 p],1,1); % LMI #4: P
lmiterm([4 1 1 0],1); % LMI #4: I
lmis = getlmis;
```

Call feasp to a find a feasible decision vector.

```
[tmin,xfeas] = feasp(lmis);
    Solver for LMI feasibility problems L(x) < R(x)
        This solver minimizes t subject to L(x) < R(x) + t*I
        The best value of t should be negative for feasibility
    Iteration : Best value of t so far
        1 0.972718
        2 0.870460
        3 -3.136305
Result: best value of t: -3.136305
        f-radius saturation: 0.000% of R = 1.00e+09
```

The result tmin $=-3.1363$ means that the problem is feasible. Therefore, the dynamical system $\dot{x}=A(t) x$ is quadratically stable for $A(t) \in \operatorname{Co}\left\{A_{1}, A_{2}, A_{3}\right\}$.

To obtain a Lyapunov matrix P proving the quadratic stability, use dec2mat.

```
P = dec2mat(lmis,xfeas,p)
P = 2 2 2
    270.8553 126.3999
    126.3999 155.1336
```

It is possible to add further constraints on this feasibility problem. For instance, the following command bounds the Frobenius norm of P by 10 while asking tmin to be less than or equal to -1 .

```
options = [0,0,10,0,0];
[tmin,xfeas] = feasp(lmis,options,-1);
Solver for LMI feasibility problems L(x) < R(x)
    This solver minimizes t subject to L(x) < R(x) + t*I
    The best value of t should be negative for feasibility
Iteration : Best value of t so far
```

```
        1 0.988505
        2 0.872239
        3 -0.476638
        4 -0.920574
        5 -0.920574
***
6
***
Result: best value of t: -1.011130
f-radius saturation: 91.385% of R = 1.00e+01
```

The third entry of options sets the feasibility radius to 10 while the third argument to feasp, -1 , sets the target value for tmin. This constraint yields tmin $=-1.011$ and a matrix P with largest eigenvalue $\lambda_{\max }(P)=8.4653$.

```
P = dec2mat(lmis,xfeas,p);
```

$\mathrm{e}=\mathrm{eig}(\mathrm{P})$
$e=2 \times 1$
3.8875
8.4653

References

The feasibility solver feasp is based on Nesterov and Nemirovski's Projective Method described in:
Nesterov, Y., and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory and Applications, SIAM, Philadelphia, 1994.

Nemirovski, A., and P. Gahinet, "The Projective Method for Solving Linear Matrix Inequalities," Proc. Amer. Contr. Conf., 1994, Baltimore, Maryland, p. 840-844.

The optimization is performed by the C-MEX file feaslv.mex.

See Also

dec2mat|gevp|mincx
Introduced before R2006a

fitfrd

Fit frequency response data with state-space model

Syntax

$B=\operatorname{fitfrd}(A, N)$
$B=\operatorname{fitfrd}(A, N, R D)$
$B=\operatorname{fitfrd}(A, N, R D, W T)$

Description

$B=\operatorname{fitfrd}(A, N)$ is a state-space object with state dimension N, where A is an $f r d$ object and N is a nonnegative integer. The frequency response of B closely matches the D-scale frequency response data in A .

A must have either 1 row or 1 column, although it need not be 1 -by- 1 . B will be the same size as A . In all cases, N should be a nonnegative scalar.
$B=\operatorname{fitfrd}(A, N, R D)$ forces the relative degree of B to be RD. RD must be a nonnegative integer. The default value for RD is 0 . If A is a row (or column) then RD can be a vector of the same size as well, specifying the relative degree of each entry of B. If RD is a scalar, then it specifies the relative degree for all entries of B. You can specify the default value for RD by setting RD to an empty matrix.
$B=$ fitfrd $(A, N, R D, W T)$ uses the magnitude of $W T$ to weight the optimization fit criteria. WT can be a double, ss or frd. If WT is a scalar, then it is used to weight all entries of the error criteria (A-B). If WT is a vector, it must be the same size as A, and each individual entry of WT acts as a weighting function on the corresponding entry of $(A-B)$.

Examples

Fit D-scale Data

Use the fitfrd command to fit D-scale data.
Create D-scale frequency response data from a fifth-order system.

```
sys = tf([1 2 2],[1 2.5 1.5])*tf(1,[1 0.1]);
sys = sys*tf([1 3.75 3.5],[1 2.5 13]);
omeg = logspace(-1,1);
sysg = frd(sys,omeg);
bode(sysg,'r-');
```


Bode Diagram

You can try to fit the frequency response D-scale data sysg with a first-order system, b1. Similarly, you can fit the D-scale data with a third-order system, b 3 .
b1 = fitfrd(sysg,1);
b3 = fitfrd(sysg,3);
Compare the original D-scale data sysg with the frequency responses of the first and third-order models calculated by fitfrd.
b1g = frd(b1,omeg);
b3g = frd(b3,omeg);
bode(sysg,'r-',b1g,'k:',b3g,'b-.')
legend('5th order system','1st order fit','3rd order fit','Location','Southwest')

Limitations

Numerical conditioning problems arise if the state order of the fit N is selected to be higher than required by the dynamics of A .

See Also
 fitmagfrd

Introduced before R2006a

fitmagfrd

Fit frequency response magnitude data with minimum-phase state-space model using log-Chebyshev magnitude design

Syntax

$B=$ fitmagfrd(A,N)
$B=$ fitmagfrd $(A, N, R D)$
$B=$ fitmagfrd $(A, N, R D, W T)$
$B=$ fitmagfrd $(A, N, R D, W T, C)$

Description

$B=$ fitmagfrd (A, N) is a stable, minimum-phase ss object, with state-dimension N, whose frequency response magnitude closely matches the magnitude data in A. A is a 1 -by- 1 frd object, and N is a nonnegative integer.
$B=$ fitmagfrd $(A, N, R D)$ forces the relative degree of B to be RD. RD must be a nonnegative integer whose default value is 0 . You can specify the default value for RD by setting RD to an empty matrix.
$B=$ fitmagfrd $(A, N, R D, W T)$ uses the magnitude of $W T$ to weight the optimization fit criteria. WT can be a double, ss or frd. If WT is a scalar, then it is used to weight all entries of the error criteria ($A-B$). If $W T$ is a vector, it must be the same size as A, and each individual entry of $W T$ acts as a weighting function on the corresponding entry of (A-B). The default value for WT is 1 , and you can specify it by setting WT to an empty matrix.
$B=$ fitmagfrd $(A, N, R D, W T, C)$ enforces additional magnitude constraints on B, specified by the values of C. LowerBound and C.UpperBound. These can be empty, double or frd (with
C.Frequency equal to A. Frequency). If C. LowerBound is non-empty, then the magnitude of B is constrained to lie above C. LowerBound. No lower bound is enforced at frequencies where C. LowerBound is equal to -inf. Similarly, the UpperBound field can be used to specify an upper bound on the magnitude of B. If C is a double or frd (with C. Frequency equal to A. Frequency), then the upper and lower bound constraints on B are taken directly from A as:

- if $C(w)==-1$, then enforce $\operatorname{abs}(B(w))<=\operatorname{abs}(A(w))$
- if $C(w)==1$, then enforce $\operatorname{abs}(B(w))>=\operatorname{abs}(A(w))$
- if $C(w)==0$, then no additional constraint
where w denotes the frequency.

Examples

Fit Frequency Response Data With Stable Minimum-Phase State-Space Model

Create frequency response magnitude data from a fifth-order system.

```
sys = tf([ll 2 2],[l 2.5 1.5])*tf(1,[1 0.1]);
sys = sys*tf([1 3.75 3.5],[1 2.5 13]);
omega = logspace(-1,1);
sysg = abs(frd(sys,omega));
bodemag(sysg,'r');
```


Fit the magnitude data with a minimum-phase, stable third-order system.

```
ord = 3;
b1 = fitmagfrd(sysg,ord);
b1g = frd(b1,omega);
bodemag(sysg,'r',blg,'k:');
legend('Data','3rd order fit');
```


Bode Diagram

Fit the magnitude data with a third-order system constrained to lie below and above the given data.

```
C2.UpperBound = sysg;
C2.LowerBound = [];
b2 = fitmagfrd(sysg,ord,[],[],C2);
b2g = frd(b2,omega);
C3.UpperBound = [];
C3.LowerBound = sysg;
b3 = fitmagfrd(sysg,ord,[],[],C3);
b3g = frd(b3,omega);
bodemag(sysg,'r',b1g,'k:',b2g,'b-.',b3g,'m--')
legend('Data','3rd order fit','3rd order fit, below data',...
    '3rd order fit, above data')
```


Bode Diagram

Fit the magnitude data with a second-order system constrained to lie below and above the given data.

```
ord = 2;
C2.UpperBound = sysg;
C2.LowerBound = [];
b2 = fitmagfrd(sysg,ord,[],sysg,C2);
b2g = frd(b2,omega);
C3.UpperBound = [];
C3.LowerBound = sysg;
b3 = fitmagfrd(sysg,ord,[],sysg,C3);
b3g = frd(b3,omega);
bgp = fitfrd(genphase(sysg),ord);
bgpg = frd(bgp,omega);
bodemag(sysg,'r',b1g,'k:',b2g,'b-.',b3g,'m--',bgpg,'r--')
legend('Data','3rd order fit','2d order fit, below data',...
    '2nd order fit, above data','bgpg')
```


Bode Diagram

Limitations

This input frd object must be either a scalar 1-by-1 object or, a row, or column vector.

Algorithms

fitmagfrd uses a version of log-Chebyshev magnitude design, solving
min f subject to (at every frequency point in A):
$|d|^{\wedge} 2 /(1+f / W T)<|n|^{\wedge} 2 / A^{\wedge} 2<|d|^{\wedge} 2^{*}(1+f / W T)$
plus additional constraints imposed with C. n, d denote the numerator and denominator, respectively, and $B=n / d . n$ and d have orders ($N-R D$) and N, respectively. The problem is solved using linear programming for fixed f and bisection to minimize f. An alternate approximate method, which cannot enforce the constraints defined by C, is $B=$ fitfrd(genphase(A), $N, R D, W T)$.

References

Oppenheim, A.V., and R.W. Schaffer, Digital Signal Processing, Prentice Hall, New Jersey, 1975, p. 513.

Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge University Press, 2004.

See Also

fitfrd

Introduced before R2006a

gapmetric

Gap metric and Vinnicombe (nu-gap) metric for distance between two systems

Syntax

```
[gap,nugap] = gapmetric(P1,P2)
```

[gap, nugap] = gapmetric(P1,P2,tol)

Description

[gap, nugap] = gapmetric (P1, P2) computes the gap and Vinnicombe (ν-gap) metrics for the distance between dynamic systems P1 and P2. The gap metric on page 1-132 values satisfy $0 \leq$ nugap \leq gap ≤ 1. Values close to zero imply that any controller that stabilizes P1 also stabilizes P2 with similar closed-loop gains.
[gap,nugap] = gapmetric(P1,P2,tol) specifies a relative accuracy for calculating the gaps.

Examples

Compute Gap Metrics for Stable and Unstable Plant Models

Create two plant models. One plant, P 1 , is an unstable first-order system with transfer function $1 /(s-$ $0.001)$. The other plant, P 2 , is stable, with transfer function $1 /(s+0.001)$.

```
P1 = tf(1,[1 -0.001]);
P2 = tf(1,[1 0.001]);
```

Despite the fact that one plant is unstable and the other is stable, these plants are close as measured by the gap and nugap metrics.

```
[gap,nugap] = gapmetric(P1,P2)
gap = 0.0021
nugap = 0.0020
```

The gap is very small compared to 1 . Thus a controller that yields a stable closed-loop system with P2 also tends to stabilize P1. For instance, the feedback controller C = 1 stabilizes both plants and renders nearly identical closed-loop gains. To see this, examine the sensitivity functions of the two closed-loop systems.

```
C = 1;
H1 = loopsens(P1,C);
H2 = loopsens(P2,C);
subplot(2,2,1); bode(H1.Si,'-',H2.Si,'r--');
subplot(2,2,2); bode(H1.Ti,'-',H2.Ti,'r--');
subplot(2,2,3); bode(H1.PSi,' -',H2.PSi,'r--');
subplot(2,2,4); bode(H1.CSo,'-',H2.CSo,'r--');
```


Next, consider two stable plant models that differ by a first-order system. One plant, P3, is the transfer function $50 /(s+50)$, and the other plant, P 4 , is the transfer function $[50 /(s+50)] * 8 /(s+8)$.

```
P3 = tf(50,[1 50]);
P4 = tf(8,[1 8])*P3;
figure
bode(P3,P4)
```

Bode Diagram

Although the two systems have similar high-frequency dynamics and the same unity gain at low frequency, by the gap and nugap metrics, the plants are fairly far apart.

```
[gap,nugap] = gapmetric(P3,P4)
gap = 0.6148
nugap = 0.6147
```


Compute Gap Metric and Stability Margin

Consider a plant and a stabilizing controller.
P1 = tf([1 2],[1 5 10]);
C $=\operatorname{tf}(4.4,[10])$;
Compute the stability margin for this plant and controller.
b1 = ncfmargin(P1,C)
b1 $=0.1961$
Next, compute the gap between P1 and the perturbed plant, P2.
P2 = tf([1 1],[1 3 10]);
[gap, nugap] = gapmetric(P1,P2)
gap $=0.1391$
nugap $=0.1390$
Because the stability margin $\mathrm{b} 1=\mathrm{b}(\mathrm{P} 1, \mathrm{C})$ is greater than the gap between the two plants, C also stabilizes P2. As discussed in "Gap Metrics and Stability Margins" on page 1-132, the stability margin $b 2=b(P 2, C)$ satisfies the inequality $\operatorname{asin}(b(P 2, C)) \geq$ asin(b1)-asin(gap). Confirm this result.
b2 = ncfmargin(P2,C);
[asin(b2) asin(b1)-asin(gap)]
ans $=1 \times 2$
$0.0997 \quad 0.0579$

Input Arguments

P1, P2 - Input systems

dynamic system models
Input systems, specified as dynamic system models. P1 and P2 must have the same input and output dimensions. If P1 or P2 is a generalized state-space model (genss or uss) then gapmetric uses the current or nominal value of all control design blocks.

tol - Relative accuracy

0.001 (default) | positive scalar

Relative accuracy for computing the gap metrics, specified as a positive scalar. If gap actual is the true value of the gap (or the Vinnicombe gap), the returned value gap (or nugap) is guaranteed to satisfy
|1-gap/gap actual $<$ tol.

Output Arguments

gap - Gap between P1 and P2

scalar in [0,1]
Gap on page 1-132 between P1 and P2, returned as a scalar in the range [0,1]. A value close to zero implies that any controller that stabilizes P1 also stabilizes P2 with similar closed-loop gains. A value close to 1 means that P1 and P2 are far apart. A value of 0 means that the two systems are identical.

nugap - Vinnicombe gap (v-gap) between P1 and P2
 scalar in [0,1]

Vinnicombe gap on page 1-132 (ν-gap) between P1 and P2, returned as a scalar value in the range [0,1]. As with gap, a value close to zero implies that any controller that stabilizes P1 also stabilizes P2 with similar closed-loop gains. A value close to 1 means that P1 and P2 are far apart. A value of 0 means that the two systems are identical. Because $0 \leq$ nugap \leq gap ≤ 1, the ν-gap can provide a more stringent test for robustness as described in "Gap Metrics and Stability Margins" on page 1132.

More About

Gap Metric

For plants P_{1} and P_{2}, let $P_{1}=N_{1} M_{1}^{-1}$ and $P_{2}=N_{2} M_{2}^{-1}$ be right normalized coprime factorizations (see rncf). Then the gap metric δ_{g} is given by:

$$
\delta_{g}\left(P_{1}, P_{2}\right)=\max \left\{\vec{\delta}_{g}\left(P_{1}, P_{2}\right), \vec{\delta}_{g}\left(P_{2}, P_{1}\right)\right\}
$$

Here, $\vec{\delta}_{g}\left(P_{1}, P_{2}\right)$ is the directed gap, given by

$$
\vec{\delta}_{g}\left(P_{1}, P_{2}\right)=\min _{\text {stable } Q(s)}\left\|\left[\begin{array}{c}
M_{1} \\
N_{1}
\end{array}\right]-\left[\begin{array}{c}
M_{2} \\
N 2
\end{array}\right] Q\right\|_{\infty} .
$$

For more information, see Chapter 17 of [1].

Vinnicombe Gap Metric

For P_{1} and P_{2}, the Vinnicombe gap metric is given by

$$
\delta_{\nu}\left(P_{1}, P_{2}\right)=\max _{\omega}\left\|\left(I+P_{2} P_{2}^{*}\right)^{-1 / 2}\left(P_{1}-P_{2}\right)\left(I+P_{1} P_{1}^{*}\right)^{-1 / 2}\right\|_{\infty^{\prime}}
$$

provided that $\operatorname{det}\left(I+P_{2}^{*} P_{1}\right)$ has the right winding number. Here, * denotes the conjugate (see ctranspose). This expression is a weighted difference between the two frequency responses $P_{1}(j \omega)$ and $P_{2}(j \omega)$. For more information, see Chapter 17 of [1].

Gap Metrics and Stability Margins

The gap and ν-gap metrics give a numerical value $\delta\left(P_{1}, P_{2}\right)$ for the distance between two LTI systems. For both metrics, the following robust performance result holds:

$$
\arcsin b\left(P_{2}, C_{2}\right) \geq \arcsin b\left(P_{1}, C_{1}\right)-\arcsin \delta\left(P_{1}, P_{2}\right)-\arcsin \delta\left(C_{1}, C_{2}\right),
$$

where the stability margin b (see ncfmargin), assuming negative-feedback architecture, is given by

$$
b(P, C)=\left\|\left[\begin{array}{l}
I \\
C
\end{array}\right](I+P C)^{-1}\left[\begin{array}{ll}
I & P
\end{array}\right]\right\|_{\infty}^{-1}=\left\|\left[\begin{array}{l}
I \\
P
\end{array}\right](I+C P)^{-1}\left[\begin{array}{ll}
I & C
\end{array}\right]\right\|_{\infty}^{-1} .
$$

To interpret this result, suppose that a nominal plant P_{1} is stabilized by controller C_{1} with stability margin $b\left(P_{1}, C_{1}\right)$. Then, if P_{1} is perturbed to P_{2} and C_{1} is perturbed to C_{2}, the stability margin is degraded by no more than the above formula. For an example, see "Compute Gap Metric and Stability Margin" on page 1-130.

The ν-gap is always less than or equal to the gap, so its predictions using the above robustness result are tighter.

The quantity $b(P, C)^{-1}$ is the signal gain from disturbances on the plant input and output to the input and output of the controller.

Gap Metrics in Robust Design

To make use of the gap metrics in robust design, you must introduce weighting functions. In the robust performance formula, replace P by $W_{2} P W_{1}$, and replace C by $W_{1}^{-1} C W_{2}^{-1}$. You can make similar
substitutions for P_{1}, P_{2}, C_{1} and C_{2}. This form makes the weighting functions compatible with the weighting structure in the H_{∞} loop shaping control design procedure used by functions such as loopsyn and ncfsyn.

References

[1] Zhou, K., Doyle, J.C., Essentials of Robust Control. London, UK: Pearson, 1997.

See Also

loopsyn|ncfmargin|ncfsyn | robstab|wcdiskmargin | wcgain

Introduced before R2006a

genphase

Fit single-input/single-output magnitude data with real, rational, minimum-phase transfer function

Syntax

resp = genphase(d)

Description

genphase uses the complex-cepstrum algorithm to generate a complex frequency response resp whose magnitude is equal to the real, positive response d, but whose phase corresponds to a stable, minimum-phase function. The input, d, and output, resp, are frd objects.

References

Oppenheim, A.V., and R.W. Schaffer, Digital Signal Processing, Prentice Hall, New Jersey, 1975, p. 513.

See Also

fitfrd|fitmagfrd
Introduced before R2006a

getDGM

Convert gain and phase variation into disk-based gain variation

Syntax

```
DGM = getDGM(GM,PM,'tight')
DGM = getDGM(GM,PM,'balanced')
[DGM,DPM] = getDGM(
```

\qquad

Description

In disk margin analysis, gain and phase variations are modeled as a factor $F(s)$ multiplying the open loop response $L(s)$. This factor takes values in a disk D centered on the real axis with real-axis intercepts gmin and gmax. The disk margin determines the largest disk size [gmin, gmax] for which the feedback loop remains stable. This provides a gain margin of at least DGM= [gmin, gmax] and also some phase margin DPM determined by the disk geometry.

Conversely, getDGM takes desired gain and phase margins GM and PM and computes the smallest disk D that delivers both. This disk is characterized by its real-axis intercepts gmin, gmax and the corresponding disk-based gain margin DGM = [gmin,gmax] and phase margin DPM meet or exceed GM and PM.

For more information about the disk model of gain and phase variation, see "Algorithms" on page 1144.

DGM $=$ getDGM(GM,PM, 'tight') computes the smallest disk that captures the target gain and phase variations specified by GM and PM.

- If GM and PM are scalars, then the disk captures gain that can increase or decrease by a factor of GM, and phase that can increase or decrease by PM.
- If GM and PM are vectors of the form [glo,ghi] and [pmin, pmax] then the disk captures relative gain and phase variations in these ranges.
- If either GM or PM is [] , that removes the corresponding constraint on the disk size.

The output is of the form $\operatorname{DGM}=$ [gmin, gmax], and describes a disk that represents absolute gain variations within that range. For instance, $D G M=[0.8,1.8]$ models gain that can vary from 0.8 times the nominal value to 1.8 times the nominal value, and phase variations determined by the disk geometry. This disk might have non-zero eccentricity (see "Algorithms" on page 1-144). Use DGM to create a umargin block that models these gain and phase variations.

DGM = getDGM(GM, PM, 'balanced ') computes the smallest disk that represents a symmetric gain variation, that is, $\mathrm{DGM}=$ [gmin, gmax] where gmin $=1 /$ gmax. This disk has zero eccentricity (see "Algorithms" on page 1-144).
[DGM, DPM] = getDGM (__) also returns the disk-based phase range DPM modeled by the disk that DGM describes. You can use this output argument with any of the previous syntaxes.

Examples

Smallest Disk-Based Gain Margin Corresponding to Gain and Phase Margins

Find the smallest disk-based gain margin that represents relative a gain variation of $\pm 6 \mathrm{~dB}$ relative to the nominal value and phase variation of $\pm 40^{\circ}$. Convert the gain variation into absolute units.

```
GM = db2mag(6)
GM = 1.9953
PM = 40;
DGM = getDGM(GM,PM,'tight')
DGM = 1\times2
    0.4299 1.9953
```

DGM describes a disk that models both gain and phase variations. The values in DGM represent the range of gain variation in the absence of phase variation. Note that the DGM range is slightly larger than the specified [1/GM, GM] range as the phase margin requirement is more stringent and determines the disk size. Visualize the full range of gain and phase variations represented by DGM.
diskmarginplot(DGM)

The 'tight' constraint computes the smallest disk that delivers both target gain and phase variations, which does not necessarily represent a symmetric gain range. In this case, the disk represents gain that can decrease somewhat more than it can increase. Examine the disk of uncertainty defined by this particular DGM.
diskmarginplot(DGM,'disk')

To enforce symmetric gain variation, use the 'balanced ' option.

Balanced Disk-Based Gain Margin from Gain and Phase Margins

Determine the disk-based gain margin that delivers symmetric gain variation of $\pm 5 \mathrm{~dB}$ and phase variation of ± 30 degrees.

```
GM = db2mag(5);
PM = 30;
DGM = getDGM(GM,PM,'balanced')
DGM = 1\times2
    0.5623 1.7783
```

The 'balanced' constraint models a disk of uncertainty that is symmetric around the nominal value. The function returns a symmetric disk-based gain margin DGM = [gmin, gmax], with gmin=1/gmax. diskmarginplot(DGM)

In this case, DPM slightly exceeds the target phase variation and DGM is equal to the target gain variation.

Disk-Based Gain Margin for Specified Gain-Variation Range

Determine the disk-based gain margin corresponding to gain variations between 90% and 160% of the nominal value, and phase variations from -15 to +15 degrees.

```
gainRange = [0.9,1.6];
phaseRange = [-15,15];
DGMt = getDGM(gainRange,phaseRange,'tight')
DGMt = 1\times2
    0.8603 1.6000
```

The 'tight' constraint models the smallest disk that delivers target gain and phase variations. This disk is modeled with gain variation that skews toward gain increase.

Alternatively, you can use the 'balanced' option to constrain the disk-based gain margin to a symmetrical range of the form gmin $=1 /$ gmax. This means that the gain can increase or decrease by equal amount.

```
DGMb = getDGM(gainRange,phaseRange,'balanced')
```

```
DGMb = 1\times2
    0.6250 1.6000
```

Visualize the range of simultaneous gain and phase variations corresponding to both gain ranges.
diskmarginplot([DGMt;DGMb])

The balanced range DGMb models a larger, symmetric gain range (gmin $=1 /$ gmax) and larger phase variations than the ones you specify. If you are confident that gain varies more in one direction than the other in your system, then this balanced model might be overly conservative.

Disk-Based Gain and Phase Ranges for Multiple Target Gain and Phase Variations

Determine the balanced disk-based gain margin ranges that delivers gain variations of $\pm 4 \mathrm{~dB}, \pm 6 \mathrm{~dB}$, and $\pm 12 \mathrm{~dB}$ and phase variation of $\pm 30^{\circ}$. You can get all the disk-based gain ranges at once by stacking the desired target ranges into a column vector.

```
GM = db2mag([4;6;12]);
PM = 30;
DGM = getDGM(GM,PM,'balanced')
DGM = 3\times2
```

```
0.5774 1.7321
0.5012 1.9953
0.2512 3.9811
```

diskmarginplot(DGM)

Range of gain and phase variations

Each row in the matrix DGM gives the disk-based gain variation for the corresponding entry in GM. For instance, the smallest balanced (symmetric) disk that captures gain variation of $\pm 4 \mathrm{~dB}$ and phase variation of $\pm 30^{\circ}$ is specified by $\operatorname{DGM}(1,:)=[0.581 .73$].

This disk represents somewhat more than the target $\pm 4 \mathrm{~dB}$, in order to capture the full target gain variation of $\pm 30^{\circ}$. For the targets $\pm 6 \mathrm{~dB}$ and $\pm 12 \mathrm{~dB}$, the disk meets the target gain variation exactly, but the corresponding disks describe larger phase variations.

Input Arguments

GM - Target amount of relative gain variation

scalar | vector | two-column matrix
Target range of relative gain variation, specified as a scalar, vector, or two-column matrix.

- If GM is a scalar, then the disk captures gain that can increase or decrease by a factor of GM. For instance, if $G M=2$, then the output DGM represents gain that can decrease or increase by a factor of 2 .
- If GM is a vectors of the form [glo, ghi] then the disk captures relative gain variations in this range. For instance, if $G M=[0.8,1.9]$, then $D G M$ represents gain that can vary between 0.8 and 1.9 times the nominal value.
- If GM [], then getDGM returns a disk that captures the phase variation specified by PM, and the corresponding gain variation determined by the disk model.

Multiple Ranges at Once

To get DGM corresponding to multiple target gain ranges at once, specify GM as a column vector
[GM1; ...;GMn] or a matrix [glol,ghil;...;gloN,ghiN].

PM - Target amount of phase variation

scalar | vector | two-column matrix
Target phase variation, specified as a scalar, vector, or two-column matrix.

- If PM is a scalar, then the disk captures phase that can increase or decrease by PM. For instance, if $P M=20$, then the output DGM represents phase that can vary by $\pm 20^{\circ}$.
- If PM is a vector of the form [pmin, pmax] with pmin <0 and pmax >0, then the disk captures phase that can vary by \pm min (abs (pmin) , pmax). For instance, if [pmin, pmax] $=[-20,40$] then the disk captures phase variation in the range $[-40,40]$.
- If PM [], then getDGM returns a disk that captures the relative gain variation specified by GM, and the corresponding phase variation determined by the disk model.

Multiple Ranges at Once

To get DGM corresponding to multiple target phase ranges at once, specify PM as a column vector [PM1; ...;PMn] or a matrix of the form [-pm1,pm1; ..; ;-pmN, pmN].

Output Arguments

DGM - Modeled range of relative gain variation

two-element vector | two-column matrix
Modeled range of relative gain variation, returned as a two-element vector of the form
[gmin, gmax], where gmin <1 and gmax >1. For instance, DGM $=$ [0.8 1.5] represents a gain that can vary between 80% and 150% of its nominal value (that is, change by a factor between 0.8 and 1.5). gmin can be negative, defining a range of relative gain variation that includes a change in sign. When you use the 'balanced ' option, the gain change is symmetric, that is, the gain can increase or decrease by the same amount (gmin $=1 /$ gmax).

The range [gmin, gmax] describes a disk of gain and phase uncertainty where the gain can vary by [gmin, gmax] and the phase can vary by an amount determined by the disk geometry. For instance, the following plot shows a disk characterized by DGM $=[0.5,2]$ (For more information about the disk-based uncertainty model, see "Algorithms" on page 1-144). The corresponding phase variation (returned in DPM) is $\pm 30^{\circ}$.

In general, DGM or the corresponding DPM might capture larger ranges of variation than those you specify with the inputs GM and PM. The disk always captures at least the specified variations.

If GM is a column vector or matrix representing multiple target ranges of gain variation, DGM is a twocolumn matrix of the form [gmin1,gmax1; ...;gminN,gmaxN], where each row is a corresponding disk-based gain range.

DPM - Disk-based phase variation

two-element vector | two-column matrix
Disk-based phase margin, returned as a two-element vector of the form [-pm, pm]. The amount of phase variation is determined by the geometry of the disk described by DGM (see "Algorithms" on page 1-144).

If PM is a column vector or matrix representing multiple target ranges of phase variation, DPM is a two-column matrix of the form [-pm1, pm1; ...;-pm2, pm2]. where each row is a corresponding disk-based gain range.

Algorithms

umargin and diskmargin model gain and phase variations in an individual feedback channel as a frequency-dependent multiplicative factor $F(s)$ multiplying the nominal open-loop response $L(s)$, such that the perturbed response is $L(s) F(s)$. The factor $F(s)$ is parameterized by:

$$
F(s)=\frac{1+\alpha[(1-E) / 2] \delta(s)}{1-\alpha[(1+E) / 2] \delta(s)} .
$$

In this model,

- $\delta(s)$ is a gain-bounded dynamic uncertainty, normalized so that it always varies within the unit disk $\left(\|\delta\|_{\infty}<1\right)$.
- α sets the amount of gain and phase variation modeled by F. For fixed E, the parameter α controls the size of the disk. For $\alpha=0$, the multiplicative factor is 1 , corresponding to the nominal L.
- E, called the eccentricity, skews the modeled uncertainty toward gain increase or gain decrease.

The factor F takes values in a disk centered on the real axis and containing the nominal value $F=1$. The disk is characterized by its intercept DGM = [gmin, gmax] with the real axis. gmin <1 and gmin > 1 are the minimum and maximum relative changes in gain modeled by F, at nominal phase. The phase uncertainty modeled by F is the range DPM $=[-\mathrm{pm}, \mathrm{pm}]$ of phase values at the nominal gain $(|F|=1)$. For instance, in the following plot, the right side shows the disk F that intersects the real axis in the interval [0.71,1.4]. The left side shows that this disk models a gain variation of $\pm 3 \mathrm{~dB}$ and a phase variation of $\pm 19^{\circ}$.

```
DGM = [0.71,1.4]
F = umargin('F',DGM)
plot(F)
```


getDGM converts the target gain and phase variations that you want to model into the disk-based gain-variation range DGM. This range fully characterizes the disk F. The corresponding phase range DPM is thus determined by DGM and the disk model.

For further details about the uncertainty model for gain and phase variations, see "Stability Analysis Using Disk Margins".

See Also
diskmargin | diskmarginplot | getDPM|umargin
\section*{Topics}
"Stability Analysis Using Disk Margins"
"Model Gain and Phase Uncertainty in Feedback Loops"
Introduced in R2020a

getDPM

Disk-based phase variation corresponding to disk-based gain variation

Syntax

```
DPM = getDPM(DGM)
DPM = getDPM(GM)
```


Description

DPM = getDPM(DGM) returns the disk-based phase variation corresponding to disk-based gain variation DGM. In the model used by umargin, gain and phase variation are represented as a multiplicative factor $F(s)$ taking values in a disk centered on the real axis. The disk described by its real-axis intercepts DGM = [gmin, gmax], which represent the relative amount of gain variation around the nominal value $F=1$. Because the disk is complex-valued, the disk described by DGM also represents a certain amount of phase variation, DPM. For more information, see getDGM.

DPM $=\operatorname{getDPM}(G M)$ is the same as getDPM([1/GM,GM]). This syntax returns the disk-based phase variation range corresponding to a gain that can increase or decrease by a factor GM.

Examples

Disk-Based Phase Variation Corresponding to Disk-Based Gain Variation

Find the disk-based phase margin which corresponds to the disk-based gain margin with variations in the range $[0.3,2]$.

```
DGM = [0.3,2];
DPM = getDPM(DGM)
DPM = 1\times2
```

 \(-45.9208 \quad 45.9208\)
 DGM $=[0.3,2]$ describes a disk of multiplicative gain and phase uncertainty in which the gain can vary from 0.3 times the nominal value to twice the nominal value (at nominal phase). Visualize the disk.
diskmarginplot(DGM,'disk')

The disk also describes phase variations of about $\pm 46^{\circ}$. getDPM returns this phase range as DPM, which is the range in which the modeled phase can vary at nominal gain. Visualize the range of simultaneous gain and phase variations captured in the disk described by DGM $=[0.3,2]$ and DPM $=[-45.9245 .92]$.
diskmarginplot(DGM)

Disk-Based Phase Margin Corresponding to Symmetric Gain Variation

Find the disk-based phase margin corresponding to the gain variation of $\pm 6 \mathrm{~dB}$, or a factor of 2 in either direction.

```
GM = db2mag(6);
DPM = getDPM(GM)
DPM = 1\times2
    -36.7611 36.7611
```

For a scalar input GM, getDPM (GM) is same as getDPM ([1/GM, GM]).
DPM $=\operatorname{getDPM}([1 / G M, G M])$
DPM $=1 \times 2$

$-36.7611 \quad 36.7611$

For the given gain variation of $\pm 6 \mathrm{~dB}$, the corresponding disk models the phase variation range of about $\pm 36.8^{\circ}$ at nominal gain. Visualize the disk and the combined gain and phase variations it represents.
diskmarginplot([1/GM,GM],'disk')

diskmarginplot([1/GM,GM])

Input Arguments

DGM - Range of relative gain variation

two-element vector | two-column matrix
Range of relative gain variation, specified as a two-element vector of the form [gmin, gmax], where gmin <1 and gmax >1. For instance, DGM $=[0.81 .5]$ represents a gain that can vary between 80% and 150% of its nominal value (that is, change by a factor between 0.8 and 1.5). gmin can be negative, defining a range of relative gain variation that includes a change in sign.

DGM represents that the disk intersects real axis in the interval [gmin, gmax], where gmin <1 and gmax > 1 . For instance, the following plot shows a disk characterized by DGM = [0.5,2].

You can obtain DGM from desired gain and phase variations (or margins) using getDGM. The GainMargin field of the output structures of the diskmargin command is also a disk-based gain range of this form. .

To get DPM corresponding to multiple gain ranges at once, specify is a two-column matrix of form [gmin1,gmax1;...;gminN, gmaxN].

GM - Amount of gain increase or decrease

scalar | vector
Amount of gain increase or decrease, specified as a real scalar or column vector.

- If GM is a real scalar, then getDPM returns the disk-based phase variation corresponding to a symmetric gain variation of [1/GM, GM]. For instance, $G M=2$ specifies a gain that can increase or decrease by a factor of 2 .
- If GM is a vector of form [GM1; ...;GMN], then the function returns disk-based phase variations corresponding to each range [1/GM1, GM1; ...;1/GMN, GMN].

Output Arguments

DPM - Disk-based phase variation

two-element vector | two-column matrix
Disk-based phase variation, returned as a two-element vector or a two-column matrix.

The vector DPM = [-pm, pm], represents the relative phase variation amount determined by the geometry of the disk described by DGM. For more information, see getDGM.

If DGM is a two-column matrix containing multiple gain-variation ranges, the function returns a twocolumn matrix of the form [-pm1,pm1; ...;-pmN, pmN].

See Also

diskmargin | diskmarginplot | getDGM|umargin|wcdiskmargin

Topics

"Stability Analysis Using Disk Margins"
"Model Gain and Phase Uncertainty in Feedback Loops"
Introduced in R2020a

getLimits

Validity range for uncertain real (ureal) parameters

Syntax

[ActLims,NormLims] = getLimits(ublk)

Description

When the uncertainty range of a ureal parameter is not centered at its nominal value, there are restrictions on the range of values the parameter can take. For robust stability analysis, these restrictions mean that the smallest destabilizing perturbation of the parameter may be out of the reach of the specified ureal model. Use getLimits to find out the range of actual and normalized values that a ureal parameter can take.
[ActLims,NormLims] = getLimits(ublk) computes the intervals of actual and normalized values that an uncertain real parameter can take. For meaningful analysis results, the actual and normalized values of ublk must remain in these intervals. Values outside these intervals are essentially meaningless. In other words, ActLims and NormLims are the ranges of validity of the uncertainty model for real parameters.

Examples

Validity Range for Uncertain Parameters

Create a ureal uncertain parameter with range centered at the nominal value.

```
ublk = ureal('a',1,'range',[-1 3])
ublk =
    Uncertain real parameter "a" with nominal value 1 and range [-1,3].
```

For such a parameter, $b=0$ (see "Algorithms" on page 1-155), so there is no constraint on the values that the actual uncertainty (ublk) and the normalized uncertainty (Δ) can take. Use getLimits to confirm the ranges of the actual and normalized uncertainty.

```
[ActLims,NormLims] = getLimits(ublk)
ActLims = 1\times2
    -Inf Inf
NormLims = 1×2
    -Inf Inf
```

Skew the uncertainty range to the right of the nominal value ($D L<D R$).

```
ublk.PlusMinus = [-1 2]
ublk =
    Uncertain real parameter "a" with nominal value 1 and range [0,3].
```

Now, the values that ublk and Δ can take for analysis purposes are limited.

```
[ActLims,NormLims] = getLimits(ublk)
ActLims = 1\times2
    -3.0000 Inf
NormLims = 1\times2
    -Inf 3
```


Input Arguments

ublk - Uncertain real parameter

ureal
Uncertain real parameter, specified as a ureal object.

Output Arguments

ActLims - Limits on actual uncertainty

2-element row vector

Limits on the actual uncertainty range taken by ublk for analysis purposes, returned as a 2 -element vector of the form [min, max]. When the uncertainty range specified in ublk is centered on the nominal value, ActLims $=-$ Inf, Inf.

NormLims - Limits on normalized uncertainty

2-element row vector
Limits on the normalized uncertainty range of ublk used for analysis purposes, returned as a 2 element vector of the form [min, max]. When the uncertainty range specified in $u b l k$ is centered on the nominal value, NormLims $=-$ Inf, Inf.

Algorithms

Analysis functions such as robstab and robgain model uncertain real parameters as:

$$
u=u_{\text {nom }}+\frac{a \Delta}{1-b \Delta}, \quad a>0,
$$

where u is the actual value, $u_{\text {nom }}$ is the nominal value, and Δ is the normalized value. When the uncertainty range is centered at the nominal value, there are no restrictions on the values u or Δ can take. However, when the uncertainty range is skewed, there are limitations on these values. To ensure continuity, the analysis functions restrict the values Δ and u to the ranges:

$$
\begin{aligned}
& \Delta<\frac{1}{|b|}, u>\left(u_{\text {nom }}-\left|\frac{a}{b}\right|\right), \text { for } D L<D R \\
& \Delta>-\frac{1}{|b|}, u<\left(u_{\text {nom }}+\left|\frac{a}{b}\right|\right), \text { for } D L<D R,
\end{aligned}
$$

where $D L$ and $D R$ define the uncertainty range of $u,\left[u_{\text {nom }}-D L, u_{\text {nom }}+D R\right]$. Note that b and $D R-D L$ always have the same sign.

See Also

actual2normalized|normalized2actual|ureal
Introduced in R2018a

getlmis

Internal description of LMI system

Syntax

lmisys $=$ getlmis

Description

After completing the description of a given LMI system with lmivar and lmiterm, its internal representation lmisys is obtained with the command
lmisys = getlmis
This MATLAB representation of the LMI system can be forwarded to the LMI solvers or any other LMI-Lab function for subsequent processing.

See Also

lmiterm|lmivar|newlmi|setlmis
Introduced before R2006a

getNominal

Nominal value of uncertain model

Syntax

Mnom $=$ getNominal (M)

Description

Mnom $=$ getNominal (M) replaces all uncertain elements in M with their nominal values. All other control design blocks in M are unchanged.

Examples

Nominal Value of Uncertain Models

Create a model of a mass-spring-damper system in which the mass, spring constant, and damping constant are all uncertain.

```
m = ureal('m',3,'percent',40);
k = ureal('k',2,'percent',30);
c = ureal('c',1,'percent',20);
G = tf(1,[m,c,k])
G =
    Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 2 states.
    The model uncertainty consists of the following blocks:
        c: Uncertain real, nominal = 1, variability = [-20,20]%, 1 occurrences
        k: Uncertain real, nominal = 2, variability = [-30,30]%, 1 occurrences
        m: Uncertain real, nominal = 3, variability = [-40,40]%, 1 occurrences
Type "G.NominalValue" to see the nominal value, "get(G)" to see all properties, and "G.Uncertain
```

G is a uss model. Extract its nominal value.

```
Gnom = getNominal(G);
```

Because G has only uncertain control design blocks, Gnom is a numeric state-space (ss) model.
Combine G with a tunable PID controller.

```
C = tunablePID('C','pid');
T = feedback(G*C,1)
T =
    Generalized continuous-time state-space model with 1 outputs, 1 inputs, 3 states, and the foll
        C: Parametric PID controller, l occurrences.
        c: Uncertain real, nominal = 1, variability = [-20,20]%, 1 occurrences
        k: Uncertain real, nominal = 2, variability = [-30,30]%, 1 occurrences
```

m: Uncertain real, nominal = 3, variability = [-40,40]\%, 1 occurrences
Type "ss(T)" to see the current value, "get(T)" to see all properties, and "T.Blocks" to interac
T is a generalized state-space (genss) model that has both tunable and uncertain blocks. Extract the nominal value of T .

Tnom $=$ getNominal(T)
Tnom =
Generalized continuous-time state-space model with 1 outputs, 1 inputs, 3 states, and the foll C: Parametric PID controller, 1 occurrences.

Type "ss(Tnom)" to see the current value, "get(Tnom)" to see all properties, and "Tnom.Blocks" t
Extracting the nominal value of T preserves the tunable control design block, resulting in another genss model.

Input Arguments

M - Uncertain model or matrix

dynamic system model | static model
Uncertain model or matrix, specified as a dynamic system model or static model. Typically, M is a model that contains uncertainty, such as a uss, uncertain genss, or umat model.

Output Arguments

Mnom - Nominal model or matrix

dynamic system model | static model
Nominal value of M, returned as a dynamic system model or static model. Mnom has no uncertain blocks.

The model type of Mnom depends on the type of M . For example, if M is a genss model with uncertain blocks and tunable blocks, then Mnom is a genss model with tunable blocks.

If M contains no control design blocks other than uncertain blocks, then Mnom is a state-space (ss) model, an frd model, or a numeric array, depending on the type of M. For example, if M is a uss model, then Mnom is a ss model. If M is a umat, then Mnom is a numeric array.

If M has no uncertain blocks, then $\mathrm{Mnom}=\mathrm{M}$.

See Also

genss | umat | uss

Introduced in R2015b

gevp

Generalized eigenvalue minimization under LMI constraints

Syntax

[lopt,xopt] = gevp(lmisys,nlfc,options,linit, xinit,target)

Description

gevp solves the generalized eigenvalue minimization problem of minimizing λ, subject to:
$C(x)<D(x)$
$0<B(x)$
$A(x)<\lambda B(x)$
where $C(x)<D(x)$ and $A(x)<\lambda B(x)$ denote systems of LMIs. Provided that "Equation 1-4" and "Equation $1-5$ " are jointly feasible, gevp returns the global minimum lopt and the minimizing value xopt of the vector of decision variables x. The corresponding optimal values of the matrix variables are obtained with dec2mat.

The argument lmisys describes the system of LMIs "Equation 1-4" to "Equation 1-6" for $\lambda=1$. The LMIs involving λ are called the linear-fractional constraints while "Equation 1-4" and "Equation 1-5" are regular LMI constraints. The number of linear-fractional constraints "Equation 1-6" is specified by nlfc . All other input arguments are optional. If an initial feasible pair (λ_{0}, χ_{0}) is available, it can be passed to gevp by setting linit to λ_{0} and xinit to x_{0}. Note that xinit should be of length decnbr(lmisys) (the number of decision variables). The initial point is ignored when infeasible. Finally, the last argument target sets some target value for λ. The code terminates as soon as it has found a feasible pair (λ, x) with $\lambda \leq$ target.

Caution

When setting up your gevp problem, be cautious to

- Always specify the linear-fractional constraints "Equation 1-6" last in the LMI system. gevp systematically assumes that the last nlfc LMI constraints are linear fractional.
- Add the constraint $B(x)>0$ or any other LMI constraint that enforces it (see Remark below). This positivity constraint is required for regularity and good formulation of the optimization problem.

Control Parameters

The optional argument options lets you access control parameters of the optimization code. In gevp, this is a five-entry vector organized as follows:

- options (1) sets the desired relative accuracy on the optimal value lopt (default $=10^{-2}$).
- options (2) sets the maximum number of iterations allowed to be performed by the optimization procedure (100 by default).
- options(3) sets the feasibility radius. Its purpose and usage are the same as for feasp.
- options (4) helps speed up termination. If set to an integer value $J>0$, the code terminates when the progress in λ over the last J iterations falls below the desired relative accuracy. Progress means the amount by which λ decreases. The default value is 5 iterations.
- options (5) = 1 turns off the trace of execution of the optimization procedure. Resetting options (5) to zero (default value) turns it back on.

Setting option(i) to zero is equivalent to setting the corresponding control parameter to its default value.

Examples

Given

$$
A 1=\left(\begin{array}{cc}
-1 & 2 \\
1 & -3
\end{array}\right), A 2=\left(\begin{array}{cc}
-0.8 & 1.5 \\
1.3 & -2.7
\end{array}\right), A 3=\left(\begin{array}{cc}
-1.4 & 0.9 \\
0.7 & -2.0
\end{array}\right)
$$

consider the problem of finding a single Lyapunov function $V(x)=x^{T} P x$ that proves stability of

$$
\dot{x}=A_{i} x(i=1,2,3)
$$

and maximizes the decay rate $\frac{d V(x)}{d t}$. This is equivalent to minimizing
α subject to
$I<P$
$A_{3}^{T} P+P A_{3}<\alpha P$
To set up this problem for gevp, first specify the LMIs "Equation" to "Equation "with $\alpha=1$:

```
setlmis([]);
p = lmivar(1,[2 1])
lmiterm([11 1 1 0],1) % P > I : I
lmiterm([-1 1 1 p],1,1) % P > I : P
lmiterm([2 1 1 p],1,al,'s') % LFC # 1 (lhs)
lmiterm([-2 1 1 1 p],1,1) % LFC # 1 (rhs)
lmiterm([3 1 1 p],1,a2,'s') % LFC # 2 (lhs)
lmiterm([-3 1 1 1 p],1,1) % LFC # 2 (rhs)
lmiterm([4 1 1 p],1,a3,'s') % LFC # 3 (lhs)
lmiterm([-4 1 1 p],1,1) % LFC # 3 (rhs)
lmis = getlmis
```

Note that the linear fractional constraints are defined last as required. To minimize α subject to "Equation" to "Equation", call gevp by
[alpha, popt]=gevp(lmis, 3)

This returns alpha $=-0.122$ as the optimal value (the largest decay rate is therefore 0.122). This value is achieved for:

$$
P=\left(\begin{array}{cc}
5.58 & -8.35 \\
-8.35 & 18.64
\end{array}\right)
$$

Tips

Generalized eigenvalue minimization problems involve standard LMI constraints "Equation 1-4" and linear fractional constraints "Equation 1- 6 ". For well-posedness, the positive definiteness of $B(x)$ must be enforced by adding the constraint $B(x)>0$ to the problem. Although this could be done automatically from inside the code, this is not desirable for efficiency reasons. For instance, the set of constraints "Equation 1-5" may reduce to a single constraint as in the example above. In this case, the single extra LMI " $P>I$ " is enough to enforce positivity of all linear-fractional right sides. It is therefore left to the user to devise the least costly way of enforcing this positivity requirement.

References

The solver gevp is based on Nesterov and Nemirovski's Projective Method described in
Nesterov, Y., and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory and Applications, SIAM, Philadelphia, 1994.

The optimization is performed by the C MEX-file fpds.mex.

See Also

dec2mat | decnbr|feasp|mincx
Introduced before R2006a

gm2dm

Convert disk-based gain margin to disk size and eccentricity

Syntax

$[$ alpha, E$]=\operatorname{gm2dm}(\mathrm{DGM})$
$[\mathrm{alpha}, \mathrm{E}]=\operatorname{gm} 2 \mathrm{dm}(\mathrm{GM})$

Description

umargin and diskmargin model gain and phase variation as a multiplicative factor $F(s)$ taking values in a disk centered on the real axis. The disk is described by two parameters: α, which sets the size of the variation, and E, or eccentricity, which biases the gain variation toward increase or decrease. (See "Algorithms" on page 1-168 for more details about this model.) The disk can alternatively be described by its real-axis intercepts DGM = [gmin, gmax], which represent the relative amount of gain variation around the nominal value $F=1$. Use gm2dm and dm2gm to convert between the α, E values and the disk-based gain margin DGM $=$ [gmin, gmax] that describe the same disk.
[alpha,E] = gm2dm(DGM) returns the disk size alpha and eccentricity E corresponding to the disk-based gain margin DGM. The gain margin DGM is a vector of the form [gmin, gmax].
[alpha, E] $=\operatorname{gm2dm}(G M)$ is the same as gm2dm([1/GM,GM]). This syntax returns the disk size for gain that can increase or decrease by a factor GM. This syntax always returns $\mathrm{E}=0$.

Examples

Determine Disk Size for Symmetric Gain Variation

Compute the disk size α of the disk that represents a gain variation of $\pm 6 \mathrm{~dB}$, that is, gain that can increase or decrease by about a factor of 2 .

```
GM = db2mag(6);
[alpha,E] = gm2dm(GM)
alpha = 0.6646
E = 0
```

For symmetric gain variations, the eccentricity E is 0 . Examine the disk corresponding to this gain variation.

```
diskmarginplot(alpha,E,'disk')
```


The disk that captures gain variations of a factor of two in either direction also models phase variations of $\pm 37^{\circ}$.

Determine Disk Size and Eccentricity from Disk-Based Gain Margin

Determine the disk size and eccentricity needed to capture gain variations between 80% and 150% of nominal and phase variation between -20 and +40 degrees. First, use getDGM to find DGM $=$ [gmin, gmax] that describes a disk that captures these target ranges.

```
DGM = getDGM([0.8,1.5],[-20,40],'tight')
DGM = 1\times2
    0.2031 1.5000
```

Now use gm2dm to convert that disk-based gain variation into the α, E parameterization of the disk.
[alpha,E] = gm2dm(DGM)
alpha $=0.6145$
$\mathrm{E}=-1.7451$

For the modeled gain and phase variations, the eccentricity is less than zero because the disk-based gain range $\operatorname{DGM}=[0.21 .5]$ includes more gain decrease than increase.
diskmarginplot(alpha, E,'disk')

Determine Disk Size and Eccentricity of Several Disk-Based Margins

Determine the disk size and eccentricity of the disks which capture gain ranges [0.2,1.3], [0.5,2] and [0.8,3].

```
GainRange1 = [0.2,1.3];
GainRange2 = [0.5,2];
GainRange3 = [0.8,3];
```

For the gain ranges above, compute the disk-based gain margin.
[alpha,E] = gm2dm([GainRange1;GainRange2;GainRange3])
alpha $=3 \times 1$
0.4364
0.6667
0.3636
$E=3 \times 1$
-3.0833
3.5000

For the vector E , the first entry is negative because first entry of DGM has bias toward gain decrease. Similarly, second entry is zero because of balanced gain variation and third entry is positive because of bias toward gain increase. The plot shows the disks corresponding to range of gain variations specified above.

```
diskmarginplot(alpha,E,'disk')
```


Input Arguments

DGM - Range of relative gain variation

two-element vector | two-column matrix
Range of relative gain variation, specified as a two-element vector of the form [gmin, gmax], where gmin <1 and gmax >1. For instance, DGM $=\left[\begin{array}{lll}0.8 & 1.5\end{array}\right]$ represents a gain that can vary between 80% and 150% of its nominal value (that is, change by a factor between 0.8 and 1.5). gmin can be negative, defining a range of relative gain variation that includes a change in sign.

The range [gmin, gmax] describes a disk of gain and phase uncertainty where the gain can vary by [gmin, gmax] and the phase can vary by an amount determined by the disk geometry. The gm2dm
command finds the disk size alpha and eccentricity E that parameterize this disk. For more information about the disk-based uncertainty model, see "Algorithms" on page 1-168.

You can obtain DGM from desired gain and phase variations (or margins) using getDGM. The GainMargin field of the output structures of the diskmargin command is also a disk-based gain range of this form. .

To get alpha and E corresponding to multiple gain variation ranges at once, specify DGM as a twocolumn matrix of the form [gmin1,gmax1; ...;gminN, gmaxN], where each row is a corresponding disk-based gain range.

GM - Amount of gain increase or decrease

scalar | vector
Amount of gain increase or decrease in absolute units, specified as a real scalar or a vector.

- If GM is a real scalar, then gm2dm returns the disk size alpha corresponding to the symmetric gain variation in the range [1/GM, GM]. For instance, GM $=2$ specifies a gain that can increase or decrease by a factor of 2 . For such symmetric gain variation, the eccentricity E is zero.
- If GM is a vector of form [GM1; ...;GMN], the function returns alpha as a column vector of the corresponding disk sizes.

Output Arguments

alpha - Disk size

scalar | vector
Disk size of the uncertainty corresponding to the input gain range, returned as a scalar or vector. Disk-based gain-margin analysis represents gain and phase variation as a multiplicative uncertainty F, which is a disk of values containing $F=1$, corresponding to the nominal value of the system. The disk is parameterized by alpha, which sets the size of the disk, and E , which biases the gain variation toward gain increase or decrease. See "Algorithms" on page 1-168 for details about the meaning of alpha.

If DGM is a two-column matrix or GM is a column vector, then alpha is a vector of the form [alpha1; ...;alphaN] of the corresponding disk sizes.

E-Eccentricity

scalar | vector
Eccentricity of the modeled uncertainty disk, returned as a scalar or vector. The eccentricity skews the modeled gain variation toward gain increase or decrease.

- $\mathrm{E}=0$ for a balanced gain range [gmin, gmax], with gmin = 1/gmax.
- E is positive for a varying gain that can increase more than it can decrease, gmax $>1 / g m i n$.
- E is negative for a varying gain that can decrease more than it can increase, gmin $<1 /$ gmax.

The more the gain range is skewed, the larger the absolute value of E . For a scalar gain variation input GM, the eccentricity E is always zero. For additional details about the meaning of E , see "Algorithms" on page 1-168.

If DGM is a two-column matrix, then E is a vector of the form [$E 1 ; \ldots ; E N]$ of the corresponding eccentricity values.

Algorithms

umargin and diskmargin model gain and phase variations in an individual feedback channel as a frequency-dependent multiplicative factor $F(s)$ multiplying the nominal open-loop response $L(s)$, such that the perturbed response is $L(s) F(s)$. The factor $F(s)$ is parameterized by:

$$
F(s)=\frac{1+\alpha[(1-E) / 2] \delta(s)}{1-\alpha[(1+E) / 2] \delta(s)}
$$

In this model,

- $\delta(s)$ is a gain-bounded dynamic uncertainty, normalized so that it always varies within the unit disk $\left(\|\delta\|_{\infty}<1\right)$.
- $\quad \alpha$ sets the amount of gain and phase variation modeled by F. For fixed E, the parameter α controls the size of the disk. For $\alpha=0$, the multiplicative factor is 1 , corresponding to the nominal L.
- E, called the eccentricity, skews the modeled uncertainty toward gain increase or gain decrease.

The factor F takes values in a disk centered on the real axis and containing the nominal value $F=1$. The disk is characterized by its intercept DGM $=$ [gmin, gmax] with the real axis. gmin <1 and gmin >1 are the minimum and maximum relative changes in gain modeled by F, at nominal phase. The phase uncertainty modeled by F is the range DPM $=[-\mathrm{pm}, \mathrm{pm}]$ of phase values at the nominal gain $(|F|=1)$. For instance, in the following plot, the right side shows the disk F that intersects the real axis in the interval [0.71,1.4]. The left side shows that this disk models a gain variation of $\pm 3 \mathrm{~dB}$ and a phase variation of $\pm 19^{\circ}$.

```
DGM = [0.71,1.4]
F = umargin('F',DGM)
plot(F)
```


gm2dm and gm2dm converts between these two ways of specifying a disk of multiplicative gain and phase uncertainty: a gain-variation range of the form DGM $=$ [gmin, gmax], and the α, E parameterization of the corresponding disk.

For further details about the uncertainty model for gain and phase variations, see "Stability Analysis Using Disk Margins".

See Also

diskmargin | diskmarginplot |dm2gm | getDGM | umargin

Topics

"Stability Analysis Using Disk Margins"

Introduced in R2020a

gridureal

Grid ureal parameters uniformly over their range

Syntax

B = gridureal(A, N)
[B,SampleValues] = gridureal(A,N)
[B,SampleValues] = gridureal(A,NAMES,N)
[B,SampleValues] = gridureal(A,NAMES1,N1,NAMES2,N2,...)

Description

$B=$ gridureal (A, N) substitutes N uniformly-spaced samples of the uncertain real parameters in A. The samples are chosen to cut "diagonally" across the cube of real parameter uncertainty space. The array B has size equal to [size(A) N]. For example, suppose A has 3 uncertain real parameters, say X, Y and Z . Let ($\mathrm{x} 1, \mathrm{x} 2$, , and xN) denote N uniform samples of X across its range. Similar for Y and Z. Then sample A at the points ($x 1, y 1, z 1$), $(x 2, y 2, z 2)$, and ($x N, y N, z N$) to obtain the result B.

If A depends on additional uncertain objects, then B will be an uncertain object.
$[B$, SampleValues $]=$ gridureal (A, N) additionally returns the specific sampled values (as a structure whose fieldnames are the names of A 's uncertain elements) of the uncertain reals. Hence, B is the same as usubs (A, SampleValues).
[B,SampleValues] = gridureal(A,NAMES,N) samples only the uncertain reals listed in the NAMES variable (cell, or char array). Any entries of NAMES that are not elements of A are simply ignored. Note that gridureal (A, fieldnames(A.Uncertainty), N) is the same as gridureal (A, N).
[B,SampleValues] = gridureal(A,NAMES1,N1,NAMES2,N2, . . .) takes N1 samples of the uncertain real parameters listed in NAMES1, and N2 samples of the uncertain real parameters listed in NAMES2 and so on. size(B) will equal [size(A) N1 N2 ...].

Examples

Grid Open-Loop and Closed-Loop Responses of Uncertain System

Create two uncertain real parameters gamma and tau. The nominal value of gamma is 4 and its range is 3 to 5 . The nominal value of tau is 0.5 and its value can vary by $+/-30$ percent.

```
gamma = ureal('gamma',4);
tau = ureal('tau',.5,'Percentage',30);
```

These uncertain parameters are used to construct an uncertain transfer function p. An integral controller, c , is synthesized for the plant p based on the nominal values of gamma and tau. The uncertain closed-loop system $c l p$ is formed.

```
p = tf(gamma,[tau 1]);
KI = 1/(2*tau.Nominal*gamma.Nominal);
```

```
c = tf(KI,[1 0]);
clp = feedback(p*c,1);
```

The figure below shows the open-loop unit step response (top plot) and closed-loop response (bottom plot) for a grid of 20 values of gamma and tau.

```
subplot(2,1,1); step(gridureal(p,20),6)
title('Open-loop plant step responses')
subplot(2,1,2); step(gridureal(clp,20),6)
```


The plot illustrates the low-frequency closed-loop insensitivity achieved by the PI control system.

Grid Over Multi-Dimensional Parameter Spaces

This example illustrates the different options in gridding high-dimensional (e.g., n greater than 2) parameter spaces.

Construct an uncertain matrix, m, from four uncertain real parameters, a, b, c, and d, each making up the individual entries in m .

```
a = ureal('a',1);
b = ureal('b',2);
c = ureal('c',3);
d = ureal('d',4);
m = [a b;c d];
```

First, grid the (a, b) space at five places, and the ($c, d)$ space at three places.
m1 = gridureal(m,\{'a';'b'\},5,\{'c';'d'\},3);
gridureal evaluates the uncertain matrix m at these 15 grid points, resulting in the numerical matrix m1.

Next, grid the (a, b, c, d) space at 15 places.
m2 = gridureal(m,\{'a';'b';'c';'d'\},15);
gridureal samples the uncertain matrix m at these 15 points, resulting in the numerical matrix $m 2$.
The $(2,1)$ entry of m is just the uncertain real parameter c. Plot the histograms of the $(2,1)$ entry of both ml and m 2 . The $(2,1)$ entry of m 1 only takes on three distinct values, while the $(2,1)$ entry of m 2 takes on 15 distinct values uniformly through its range.

```
subplot(2,1,1)
hist(squeeze(m1(2,1,:)))
title('2,1 entry of m1')
subplot(2,1,2)
hist(squeeze(m2(2,1,:)))
title('2,1 entry of m2')
```


See Also

usample \| usubs

Introduced before R2006a

h2hinfsyn

Mixed H_{2} / H_{∞} synthesis with regional pole placement constraints

Syntax

$[K, C L$, normz,info] $=h 2 h i n f s y n(P, N m e a s, N c o n, N z 2, W z, N a m e, V a l u e)$

Description

[K,CL,normz,info] = h2hinfsyn(P,Nmeas,Ncon,Nz2,Wz,Name, Value) employs LMI techniques to compute an output-feedback control law $u=K(s) y$ for the control problem of the following illustration.

The LTI plant P has partitioned state-space form given by

$$
\begin{gathered}
\dot{x}=A x+B_{1} w+B_{2} u, \\
z_{\infty}=C_{1} x+D_{11} w+D_{12} u, \\
z_{2}=C_{2} x+D_{21} w+D_{22} u, \\
y=C_{y} x+D_{y 1} w+D_{y 2} u .
\end{gathered}
$$

The resulting controller K:

- Keeps the H_{∞} norm G of the transfer function from w to z_{∞} below the value you specify using the Name, Value argument 'HINFMAX'.
- Keeps the H_{2} norm H of the transfer function from w to z_{2} below the value you specify using the Name, Value argument 'H2MAX'.
- Minimizes a trade-off criterion of the form

$$
W_{1} G^{2}+W_{2} H^{2}
$$

where W_{1} and W_{2} are the first and second entries in the vector $W z$.

- Places the closed-loop poles in the LMI region that you specify using the Name, Value argument 'REGION'.

Use the input arguments Nmeas, Ncon, and Nz2 to specify the number of signals in y, u, and z_{2}, respectively. You can use additional Name, Value pairs to specify additional options for the computation.

Examples

Controller Design with Pole-Placement Constraint

Given a plant, design a controller such that the poles of the closed-loop system lie in the half-plane defined by $\operatorname{Re}(s)<-1$.

You can define this region for pole-placement using the interactive lmireg command. To do so,
1 Enter region $=$ lmireg at the MATLAB® command line.
2 Enter h to specify a half-plane constraint.
3 Enter l to specify the left half-plane.
4 Enter - 1 to specify that the cutoff for the region is $x 0=-1$.
5 Enter q to exit and create the LMI region.
The region created by this process is equivalent to the following commands. (For more information, see the lmireg reference page.)

```
RealPart = -1;
region = [-2*RealPart + li 1];
```

Specify the plant model. For this example, use a three-input, two-output partitioned plant.

```
A = [1 0;2 1];
B = [1 1;1 0];
C = [1 1;1 1;1 1];
D = zeros(3,2);
P = ss(A,B,C,D);
```

Compute a controller for P using the LMI region to restrict the closed-loop pole locations. Assume the partitioned plant contains one control signal and one measurement signal (nmeas = ncont $=1$). Apply an H_{2} norm constraint to one signal ($\mathrm{Nz2}=1$), and give the H_{2} and H_{∞} norms equal weight.

```
ncont = 1;
nmeas = 1;
Nz2 = 1 ;
Wz = [0 0];
[K,CL] = h2hinfsyn(P,nmeas,ncont,Nz2,Wz,'Region',region);
    Solver for LMI feasibility problems L(x) < R(x)
    This solver minimizes t subject to L(x) < R(x) + t*I
    The best value of t should be negative for feasibility
Iteration : Best value of t so far
    1 7.368392
    2 -95.362851
Result: best value of t: -95.362851
        f-radius saturation: 0.009% of R = 1.00e+08
```

Confirm that the poles of the closed-loop system have $\operatorname{Re}(s)<-1$.

```
pole(CL)
```

```
ans = 4×1 complex
    -1.6786 + 3.2056i
    -1.6786 - 3.2056i
    -1.5563 + 1.6678i
    -1.5563 - 1.6678i
```

You can push the closed-loop eigenvalues further left by changing RealPart. Or you can define other pole-placement regions. For instance, place the poles such that $\operatorname{Re}(s)$ falls in a strip of the complex plane $-5<\operatorname{Re}(s)<-3$. To define this region, use lmireg interactively to create reg1 specifying $\operatorname{Re}(s)$ >-5, and reg2 specifying $\operatorname{Re}(s)<-3$. Then, enter region $=$ lmireg(reg1, reg2) to define the intersection of these two regions. The following code is equivalent.

```
LeftRealPart = -5;
RightRealPart = -3;
region = [-2*RightRealPart + 1i 0 1 0;
    0 2*LeftRealPart + li 0 -1];
```

Compute the new controller and confirm the locations of the closed-loop poles.

```
[K,CL] = h2hinfsyn(P,nmeas,ncont,Nz2,Wz,'Region',region);
    Solver for LMI feasibility problems L(x) < R(x)
    This solver minimizes t subject to L(x) < R(x) + t*I
    The best value of t should be negative for feasibility
Iteration : Best value of t so far
    1 17.688394
    2 1.074621
    3 -13.502955
Result: best value of t: -13.502955
    f-radius saturation: 0.048% of R = 1.00e+08
pole(CL)
ans = 4×1 complex
    -3.7864 + 4.9210i
    -3.7864 - 4.9210i
    -3.7752 + 3.6186i
    -3.7752 - 3.6186i
```


Input Arguments

P - Plant
LTI model
Plant, specified as an LTI model such as a tf or ss model. P must be a continuous-time model.

Nmeas - Number of measurement signals

positive integer

Number of measurement signals, specified as a positive integer. This value is the number of signals in y.

Ncon - Number of control signals

positive integer
Number of control signals, specified as a positive integer. This value is the number of signals in u.

Nz2 - Number of signals subject to H2 constraint

positive integers
Number of signals subject to the constraint on the H_{2} norm, specified as a positive integer. This value is the number of signals in z_{2}. If the total number of outputs of P is Nout, then the first Nout - Nz2

- Nmeas outputs of P are subject to the constraint on the H_{∞} norm.

Wz - Weights for \boldsymbol{H}_{∞} and $\boldsymbol{H}_{\mathbf{2}}$ performance
1-by-2 vector
Weights for H_{∞} and H_{2} performance, specified as a 1-by-2 vector of the form [Winf, W2].

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . ,NameN, ValueN.

```
Example: 'REGION',reg,'H2MAX',1,'HINFMAX',1,'DISPLAY','on'
```


REGION - Pole placement region

[] (default) | matrix
Pole placement region, specified as a comma-separated pair consisting of 'REGION ' and a matrix of the form $[L, M]$. This matrix specifies the pole placement region as:

$$
\left\{z: L+z M+\bar{z} M^{T}<0\right\} .
$$

Generate the matrix using lmireg. The default LMI region for pole placement, specified by the empty matrix [], is the open left-half plane, enforcing closed-loop stability only.

H2MAX - Upper bound on $\mathbf{H}_{\mathbf{2}}$ norm

Inf (default) | positive scalar
Upper bound on the H_{2} norm of the transfer function from w to z_{2}, specified as a comma-separated pair consisting of 'H2MAX' and a positive scalar value or Inf. The default value Inf is equivalent to setting the limit to zero, and causes h2hinfsyn to minimize the H_{2} norm subject to the trade-off criterion.

Example: 'H2MAX',1

HINFMAX - Upper bound on \boldsymbol{H}_{∞} norm

Inf (default) | positive scalar
Upper bound on the H_{∞} norm of the transfer function from w to z_{∞}, specified as a comma-separated pair consisting of 'HINFMAX' and a positive scalar value or Inf. The default value Inf is equivalent to setting the limit to zero, and causes h2hinfsyn to minimize the H_{∞} norm subject to the trade-off criterion.

Example: 'HINFMAX',1

DKMAX - Bound on controller feedthrough

100 (default) | nonnegative scalar
Bound on the norm on the feedthrough matrix D_{K} of the controller, specified as a comma-separated pair consisting of 'DKMAX' and a nonnegative scalar value. To make the controller K strictly proper, set 'DKMAX' to 0.

Example: 'DKMAX',0

TOL - Relative accuracy of trade-off criterion

0.01 (default) | positive scalar

Desired relative accuracy on the optimal value of the trade-off criterion, specified as a commaseparated pair consisting of 'TOL' and a positive scalar value.

DISPLAY - Toggle for screen display

'off' (default)|'on'
Toggle for screen display of synthesis information, specified as a comma-separated pair consisting of 'DISPLAY' and either 'on' or 'off'.

Output Arguments

K - Optimal output-feedback controller
 state-space model

Optimal output-feedback controller, returned as a state-space (ss) model with Nmeas inputs and Ncon outputs.

CL - Closed-loop system

state-space model
Closed-loop system with synthesized controller, returned as a state-space (ss) model. The closed-loop system is CL $=l f t(P, K)$.
normz - Closed-loop norms
1-by-2 vector
Closed-loop norms, returned as a 1-by-2 vector. The entries in this vector, respectively, are:

- The H_{∞} norm of the closed-loop transfer function from w to z_{∞}.
- The H_{2} norm of the closed-loop transfer function from w to z_{2}.

info - Solutions of LMI solvability conditions

structure

Solutions of LMI solvability conditions, returned as a structure containing the following fields:

- R - Solution R of LMI solvability condition
- S - Solution S of LMI solvability condition

Tips

- Do not choose weighting functions with poles very close to $s=0$ ($z=1$ for discrete-time systems). For instance, although it might seem sensible to choose $W=1 / s$ to enforce zero steady-state error, doing so introduces an unstable pole that cannot be stabilized, causing synthesis to fail. Instead, choose $W=1 /(s+\delta)$. The value δ must be small but not very small compared to system dynamics. For instance, for best numeric results, if your target crossover frequency is around $1 \mathrm{rad} / \mathrm{s}$, choose $\delta=0.0001$ or 0.001 . Similarly, in discrete time, choose sample times such that system and weighting dynamics are not more than a decade or two below the Nyquist frequency.

References

[1] Chilali, M., and P. Gahinet, " H_{∞} Design with Pole Placement Constraints: An LMI Approach," IEEE Trans. Aut. Contr., 41 (1995), pp. 358-367.
[2] Scherer, C., "Mixed H2/H-infinity Control," Trends in Control: A European Perspective, SpringerVerlag (1995), pp.173-216.

See Also

lmireg|msfsyn
Introduced before R2006a

h2syn

Compute H_{2} optimal controller

Syntax

[K,CL, gamma] = h2syn(P, nmeas, ncont)
[K,CL, gamma] = h2syn(P, nmeas, ncont,opts)
[K,CL, gamma,info] = h2syn(\qquad)

Description

[K, CL, gamma] = h2syn(P , nmeas, ncont) computes a stabilizing H_{2}-optimal controller K for the plant P. The plant has a partitioned form
$\left[\begin{array}{l}z \\ y\end{array}\right]=\left[\begin{array}{ll}P_{11} & P_{12} \\ P_{21} & P_{22}\end{array}\right]\left[\begin{array}{l}w \\ u\end{array}\right]$,
where:

- w represents the disturbance inputs.
- u represents the control inputs.
- z represents the error outputs to be kept small.
- y represents the measurement outputs provided to the controller.
nmeas and ncont are the number of signals in y and u, respectively. y and u are the last outputs and inputs of P, respectively. h2syn returns a controller K that stabilizes P and has the same number of states. The closed-loop system $C L=l f t(P, K)$ achieves the performance level gamma, which is the H_{2} norm of CL (see norm).
[K,CL,gamma] = h2syn(P,nmeas, ncont,opts) specifies additional computation options. To create opts, use h2syn0ptions.
$[K, C L$, gamma,info] $=h 2 \operatorname{syn}($ \qquad) returns a structure containing additional information about the H_{2} synthesis computation. You can use this argument with any of the previous syntaxes.

Examples

Stabilizing Controller for MIMO Plant

Stabilize a 5-by-4 unstable plant with three states, two measurement signals, and one control signal.
In practice, P is an augmented plant that you have constructed by combining a model of the system to control with appropriate H_{2} weighting functions. For this example, use the following model.

A	$=[5$	6	-6
6	0	5	
-6	5	$4] ;$	
B	$=[0$	4	0

$\left.\begin{array}{cccl}1 & 1 & -2 & -2 \\ 4 & 0 & 0 & -3\end{array}\right] ;$

Confirm that P is unstable by examining its poles, some of which lie in the right half-plane.

```
pole(P)
```

ans $=3 \times 1$
-8.5648
6.8612
10.7036

Design the stabilizing controller. h2syn assumes that the nmeas measurement signals and the ncont control signals are the last outputs and last inputs of P , respectively.

```
nmeas = 2;
ncont = 1;
[K,CL,gamma] = h2syn(P,nmeas,ncont);
```

Examine the closed-loop system to confirm that the controller K stabilizes the plant.

```
pole(CL)
ans = 6x1 complex
-31.6236 + 0.0000i
-12.6460 + 3.8045i
-12.6460 - 3.8045i
    -9.6073 + 0.0000i
    -9.2393 + 0.0000i
    -8.6939 + 0.0000i
```


Mixed-Sensitivity H2 Loop Shaping

Shape the singular value plots of the sensitivity $S=(I+G K)^{-1}$ and complementary sensitivity $T=G K(I+G K)^{-1}$.

To do so, find a stabilizing controller K that minimizes the H_{2} norm of:

$$
T_{y, u_{1}} \triangleq\left[\begin{array}{c}
W_{1} S \\
\left(W_{2} / G\right) T \\
W_{3} T
\end{array}\right] .
$$

Assume the following plant and weights:

$$
G(s)=\frac{s-1}{s-2}, W_{1}=\frac{0.1}{100 s+1}, W_{2}=0.1, W_{3}=0 .
$$

Using those values, construct the augmented plant P, as illustrated in the mixsyn reference page.

```
s = zpk('s');
G = 10*(s-1)/(s+1)^2;
G.u = 'u2';
G.y = 'y';
W1 = 0.1/(100*s+1);
W1.u = 'y2';
W1.y = 'y11';
W2 = tf(0.1);
W2.u = 'u2';
W2.y = 'y12';
S = sumblk('y2 = ul - y');
P = connect(G,S,W1,W2,{'u1','u2'},{'y11','y12','y2'});
```

Use h2syn to generate the controller. This system has one measurement signal and one control signal, which are the last output and input of P , respectively.

```
[K,CL,gamma] = h2syn(P,1,1);
```

Examine the resulting loop shapes.

```
L = G*K;
S = inv(1+L);
T = 1-S;
sigmaplot(L,'k-.',S,'r',T,'g')
legend('open-loop','sensitivity','closed-loop')
```


Input Arguments

P - Plant

dynamic system model
Plant, specified as a dynamic system model such as a state-space (ss) model. P can be any LTI model with inputs [$w ; u$] and outputs $[z ; y]$, where:

- w represents the disturbance inputs.
- u represents the control inputs.
- z represents the error outputs to be kept small.
- y represents the measurement outputs provided to the controller.

Construct P such that measurement outputs y are the last outputs, and the control inputs u are the last inputs.

The function converts P to a state-space model of the form:

$$
\begin{gathered}
d x=A x+B_{1} w+B_{2} u \\
z=C_{1} x+D_{11} w+D_{12} u \\
y=C_{2} x+D_{21} w+D_{22} u
\end{gathered}
$$

If P is a generalized state-space model with uncertain or tunable control design blocks, then the function uses the nominal or current value of those elements.

Conditions on \mathbf{P}

For the H_{2} synthesis problem to be solvable, $\left(A, B_{2}\right)$ must be stabilizable, and $\left(A, C_{2}\right)$ must be detectable. The plant is further restricted in that P_{12} and P_{21} must have no zeros on the imaginary axis (continuous-time plants) or the unit circle (discrete-time plants). In continuous time, this restriction means that

$$
\left[\begin{array}{cc}
A-j \omega & B_{2} \\
C_{1} & D_{12}
\end{array}\right]
$$

has full column rank for all frequencies ω. By default, h2syn automatically adds extra disturbances and errors to the plant to ensure that the restriction on P_{12} and P_{21} is met. This process is called regularization. If you are certain your plant meets the conditions, you can turn off regularization using the Regularize option of h2syn0ptions.

nmeas - Number of measurement outputs

1 (default) | nonnegative integer
Number of measurement output signals in the plant, specified as a nonnegative integer. The function takes the last nmeas plant outputs as the measurements y. The returned controller K has nmeas inputs.

ncont - Number of control inputs

1 (default) | nonnegative integer
Number of control input signals in the plant, specified as a nonnegative integer. The function takes the last ncont plant inputs as the controls u. The returned controller K has ncont outputs.

opts - Options

h2syn0ptions object
Additional options for the computation, specified as an options set you create using h2syn0ptions. Available options include turning off automatic scaling and regularization. For more information, see h2syn0ptions.

Output Arguments

K - Controller

ss model object
Controller, returned as a state-space (ss) model object. The controller stabilizes P and has the same number of states as P. The controller has nmeas inputs and ncont outputs.

CL - Closed-loop transfer function

ss model object | []
Closed-loop transfer function, returned as a state-space (ss) model object or []. The closed-loop transfer function is $C L=l f t(P, K)$ as in the following diagram.

gamma - Controller performance

nonnegative scalar
Controller performance, returned as a nonnegative scalar value. This value is the performance achieved using the returned controller K , and is the H_{2} norm of CL (see norm).

info - Synthesis data

structure
Additional synthesis data, returned as a structure. info has the following fields.

Field	Description
X	Solution of state-feedback Riccati equation, returned as a matrix.
Y	Solution of observer Riccati equation, returned as a matrix.
Ku	State feedback gain of in the observer form of controller K returned as a matrix. For more information about the observer-form controller, see "Tips" on page 1-186.
Lx, Lu	Observer gains of the observer form of controller K, returned as matrices. For more information about the observer-form controller, see "Tips" on page 1-186.
Preg	Regularized plant used for h2syn computation, returned as a state-space (ss) model object. By default, h2syn automatically adds extra disturbances and errors to the plant to ensure that it meets certain conditions (see the input argument P). The field info. Preg contains the resulting plant model.
NORMS	Costs for the synthesized controller, returned in a vector of the form [FI OE DF FC], where: - FI is the full-information control cost. - OE is the output-estimation cost. - DF is the disturbance-feedforward cost. - FC is full control cost. These quantities are related by $\mathrm{FI}^{\wedge} 2+0 \mathrm{E}^{\wedge} 2=\mathrm{DF}^{\wedge} 2+\mathrm{FC}^{\wedge} 2=$ gamma^2. For more details on these norms, see sections 14.8 and 14.9 of [1].

Field	Description
KFI	Full-information state-feedback gain, returned as a matrix. The full- information problem assumes full knowledge of the state x and disturbance w, and looks for an optimal state-feedback control of the form: - $u(t)=\mathrm{KFI}^{*}[\mathrm{x}(\mathrm{t}) ; \mathrm{w}(\mathrm{t})]$ in continuous time. In continuous time, u depends only on x. The entries in KFI corresponding to w are zero. $-\mathrm{u}[\mathrm{k}]=\mathrm{KFI} *[\mathrm{x}[\mathrm{k}] ; \mathrm{w}[\mathrm{k}]]$ in discrete time. For more information, see section 14.8 of $[1]$.
GFI	Full-information closed-loop transfer from w to z with the controller KFI, returned as a state-space (ss) model. The H_{2} norm of GFI is FI.
HAMX, HAMY	X Hamiltonian matrix (state feedback) and Y Hamiltonian matrix (Kalman filter). These values are provided for reference, but h2syn does not use them to compute the Riccati solutions. Instead, h2syn uses the implicit solvers icare and idare.

Tips

- h2syn gives you state-feedback gain and observer gains that you can use to express the controller in observer form. The observer form of the controller K is:

$$
\begin{gathered}
d x_{e}=A x_{e}+B_{2} u+L_{\chi} e \\
u=K_{u} x_{e}+L_{u} e .
\end{gathered}
$$

Here, the innovation term e is:

$$
e=y-C_{2} x_{e}-D_{22} u .
$$

h2syn returns the state-feedback gain K_{u} and the observer gains L_{x} and L_{u} as fields in the info output argument.

You can use this form of the controller for gain scheduling in Simulink. To do so, tabulate the plant matrices and the controller gain matrices as a function of the scheduling variables using the Matrix Interpolation block. Then, use the observer form of the controller to update the controller variables as the scheduling variables change.

- Do not choose weighting functions with poles very close to $s=0$ ($z=1$ for discrete-time systems). For instance, although it might seem sensible to choose $W=1 / s$ to enforce zero steady-state error, doing so introduces an unstable pole that cannot be stabilized, causing synthesis to fail. Instead, choose $W=1 /(s+\delta)$. The value δ must be small but not very small compared to system dynamics. For instance, for best numeric results, if your target crossover frequency is around $1 \mathrm{rad} / \mathrm{s}$, choose $\delta=0.0001$ or 0.001 . Similarly, in discrete time, choose sample times such that system and weighting dynamics are not more than a decade or two below the Nyquist frequency.

Algorithms

h2syn uses the methods described in Chapter 14 of [1].

References

[1] Zhou, K., Doyle, J., Glover, K, Robust and Optimal Control. Upper Saddle River, NJ: Prentice Hall, 1996.

See Also

h2synOptions|hinfsyn|loopsyn|mixsyn|ncfsyn|norm
Introduced before R2006a

h2synOptions

Option set for h2syn

Syntax

opts = h2syn0ptions
opts = h2synOptions(Name,Value)

Description

opts $=h 2$ syn0ptions creates the default options set for the h2syn command.
opts = h2synOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

Examples

Turn Off Regularization for H2 Synthesis

Create an option set for the h2syn command that turns off automatic regularization of the plant. Turning off regularization can speed up the computation when you know your problem is far from singular.

You can use Name, Value pairs to create the option set.

```
opts = h2synOptions('Regularize','off');
```

Alternatively, create a default options set and use dot notation to change the option value.

```
opts = h2synOptions;
opts.Regularize = 'off';
```

You can now use opts as an input argument to h2syn.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.
Example: 'AutoScale', 'on','Regularize', 'off'

AutoScale - Automatic plant scaling

'on' (default)|'off'
Automatic plant scaling, specified as the comma-separated pair consisting of 'AutoScale' and one of the following:

- 'on' - h2syn automatically scales the plant states, controls, and measurements to improve numerical accuracy. h2syn always returns the controller K in the original unscaled coordinates.
- 'off' - h2syn does not change the plant scaling. Turning off scaling when you know your plant is well scaled can speed up the computation.

Example: opts = h2syn0ptions('AutoScale','off') creates an option set for h2syn that turns off automatic scaling.

Regularize - Automatic regularization

'on' (default)|'off'
Automatic regularization of the plant, specified as the comma-separated pair consisting of 'Regularize' and one of the following:

- 'on' - h2syn automatically regularizes the plant to enforce requirements on P_{12} and P_{21} (see h2syn). Regularization is a process of adding extra disturbances and errors to handle singular problems.
- 'off' - h2syn does not regularize the plant. Turning off regularization can speed up the computation when you know your problem is far enough from singular.

Example: opts = h2syn0ptions('Regularize','off') creates an option set for h2syn that turns off regularization.

Output Arguments

opts - Options for h2syn

h2syn options object
Options for the h2syn computation, returned as an h2syn options object. Use the object as an input argument to h2syn. For example:

```
[K,CL,gamma,info] = h2syn(P,nmeas,ncont,opts);
```


See Also

h2syn

Introduced in R2019a

hankelmr

Hankel minimum degree approximation (MDA) without balancing

Syntax

```
GRED = hankelmr(G)
GRED = hankelmr(G,order)
[GRED,redinfo] = hankelmr(G,key1,value1,...)
[GRED,redinfo] = hankelmr(G,order,key1,value1,...)
```


Description

hankelmr returns a reduced order model GRED of G and a struct array redinfo containing the error bound of the reduced model and Hankel singular values of the original system.

The error bound is computed based on Hankel singular values of G. For a stable system Hankel singular values indicate the respective state energy of the system. Hence, reduced order can be directly determined by examining the system Hankel SV's, σ.

With only one input argument G , the function will show a Hankel singular value plot of the original model and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the additive error \|G-GRED\| ∞ for well-conditioned model reduced problems [1]:

$$
\| G-\text { Gred } \|_{\infty} \leq 2 \sum_{k+1}^{n} \sigma_{i}
$$

Note It seems this method is similar to the additive model reduction routines balancmr and schurmr, but actually it can produce more reliable reduced order model when the desired reduced model has nearly controllable and/or observable states (has Hankel singular values close to machine accuracy). hankelmr will then select an optimal reduced system to satisfy the error bound criterion regardless the order one might naively select at the beginning.

This table describes input arguments for hankelmr.

Argument	Description
G	LTI model to be reduced (without any other inputs will plot its Hankel singular values and prompt for reduced order)
ORDER	(Optional) an integer for the desired order of the reduced model, or optionally a vector packed with desired orders for batch runs

A batch run of a serial of different reduced order models can be generated by specifying order $=$ $\mathrm{x}: \mathrm{y}$, or a vector of integers. By default, all the anti-stable part of a system is kept, because from control stability point of view, getting rid of unstable state(s) is dangerous to model a system.
'MaxError' can be specified in the same fashion as an alternative for 'ORDER'. In this case, reduced order will be determined when the sum of the tails of the Hankel sv's reaches the 'MaxError'.

Argument	Value	Description
'MaxError'	Real number or vector of different errors	Reduce to achieve H_{∞} error. When present, 'MaxError' overrides ORDER input.
'Weights'	\{Wout , Win\} cell array	Optimal 1x2 cell array of LTI weights Wout (output) and Win (input). Default for both is identity. Weights must be invertible.
'Display'	'on ' or 'off'	Display Hankel singular plots (default 'off' '.
'Order'	Integer, vector or cell array	Order of reduced model. Use only if not specified as 2nd argument.

Weights on the original model input and/or output can make the model reduction algorithm focus on some frequency range of interests. But weights have to be stable, minimum phase and invertible.

This table describes output arguments.

Argument	Description	
GRED	LTI reduced order model. Become multi-dimensional array when input is a serial of different model order array.	
REDINF0	A STRUCT array with 4 fields: - REDINFO. ErrorBound (bound on \\| G-GRED \|⿻) - REDINFO.StabSV (Hankel SV of stable part of G) - REDINFO.UnstabSV (Hankel SV of unstable part of G) - REDINFO.Ganticausal (Anti-causal part of Hankel MDA)	

G can be stable or unstable, continuous or discrete.

Note If size(GRED) is not equal to the order you specified. The optimal Hankel MDA algorithm has selected the best Minimum Degree Approximate it can find within the allowable machine accuracy.

Examples

Given a continuous or discrete, stable or unstable system, G , the following commands can get a set of reduced order models based on your selections:

```
rng(1234,'twister');
G = rss(30,5,4);
[gl, redinfol] = hankelmr(G); % display Hankel SV plot
    % and prompt for order (try 15:20)
[g2, redinfo2] = hankelmr(G,20);
[g3, redinfo3] = hankelmr(G,[10:2:18]);
[g4, redinfo4] = hankelmr(G,'MaxError',[0.01, 0.05]);
```

```
for i = 1:4
    figure(i); eval(['sigma(G,g' num2str(i) ');']);
end
```

"Singular Value Bode Plot of G (30-state, 5 outputs, 4 inputs)" on page 1-192 shows a singular value Bode plot of a random system G with 20 states, 5 output and 4 inputs. The error system between G and its Zeroth order Hankel MDA has it infinity norm equals to an all pass function, as shown in "AllPass Error System Between G and Zeroth Order G Anticausal" on page 1-193.

The Zeroth order Hankel MDA and its error system sigma plot are obtained via commands

```
[g0,redinfo0] = hankelmr(G,0);
```

sigma(G-redinfo0.Ganticausal)

This interesting all-pass property is unique in Hankel MDA model reduction.

Singular Value Bode Plot of G (30-state, 5 outputs, 4 inputs)

All-Pass Error System Between G and Zeroth Order G Anticausal

Algorithms

Given a state-space (A, B, C, D) of a system and k, the desired reduced order, the following steps will produce a similarity transformation to truncate the original state-space system to the $k^{\text {th }}$ order reduced model.

1 Find the controllability and observability grammians P and Q.
2 Form the descriptor

$$
E=Q P-\rho^{2} I
$$

where $\sigma_{k}>\rho \geq \sigma_{k+1}$, and descriptor state-space
Take SVD of descriptor E and partition the result into $k^{\text {th }}$ order truncation form

$$
\left[\begin{array}{cc}
E s-\bar{A} & \bar{B} \\
\bar{C} & \bar{D}
\end{array}\right]=\left[\begin{array}{cc}
\rho^{2} A^{T}+Q A P & Q B \\
C P & D
\end{array}\right]
$$

$E=\left[U_{E 1}, U_{E 2}\right]\left[\begin{array}{cc}\Sigma_{E} 0 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{c}V_{E 1}^{T} \\ V_{E 2}^{T}\end{array}\right]$
3 Apply the transformation to the descriptor state-space system above we have

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{l}
U_{E 1}^{T} \\
U_{E 2}^{T}
\end{array}\right]\left(\rho^{2} A^{T}+Q A P\right)\left[\begin{array}{ll}
V_{E 1} & V_{E 2}
\end{array}\right]} \\
& {\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]=\left[\begin{array}{l}
U_{E 1}^{T} \\
U_{E 2}^{T}
\end{array}\right]\left[Q B-C^{T}\right]} \\
& {\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]=\left[\begin{array}{c}
C P \\
-\rho B^{T}
\end{array}\right]\left[\begin{array}{ll}
V_{E 1} & \left.V_{E 2}\right] \\
D_{1}=D
\end{array}\right.}
\end{aligned}
$$

4 Form the equivalent state-space model.

$$
\left[\begin{array}{cc}
\tilde{A} & \tilde{B} \\
\tilde{C} & \tilde{D}
\end{array}\right]=\left[\begin{array}{cc}
\sum_{E}^{-1}\left(A_{11}-A_{12} A_{22}^{\dagger} A_{21}\right) & \sum_{E}^{-1}\left(B_{1}-A_{12} A_{22}{ }^{\dagger} B_{2}\right) \\
C_{1}-C_{2} A_{22}{ }^{\dagger} A_{21} & D_{1}-C_{2} A_{22}{ }^{\dagger B_{2}}
\end{array}\right]
$$

The final $k^{\text {th }}$ order Hankel MDA is the stable part of the above state-space realization. Its anticausal part is stored in redinfo.Ganticausal.

The proof of the Hankel MDA algorithm can be found in [2]. The error system between the original system G and the Zeroth Order Hankel MDA G_{0} is an all-pass function [1].

References

[1] Glover, K., "All Optimal Hankel Norm Approximation of Linear Multivariable Systems, and Their L_{α}-error Bounds," Int. J. Control, vol. 39, no. 6, pp. 1145-1193, 1984.
[2] Safonov, M.G., R.Y. Chiang, and D.J.N. Limebeer, "Optimal Hankel Model Reduction for Nonminimal Systems," IEEE Trans. on Automat. Contr., vol. 35, no. 4, April 1990, pp. 496-502.

See Also

balancmr|bstmr|hankelsv|ncfmr|reduce|schurmr
Introduced before R2006a

hankelsv

Compute Hankel singular values for stable/unstable or continuous/discrete system

Syntax

hankelsv(G)
hankelsv(G,ErrorType,style)
[sv_stab,sv_unstab]=hankelsv(G,ErrorType,style)

Description

[sv_stab,sv_unstab]=hankelsv(G,ErrorType,style) returns a column vector SV_STAB containing the Hankel singular values of the stable part of G and SV_UNSTAB of anti-stable part (if it exists). The Hankel SV's of anti-stable part ss(a,b,c,d) is computed internally via ss(-a,$\mathrm{b}, \mathrm{c}, \mathrm{d}$). Discrete model is converted to continuous one via the bilinear transform.
hankelsv(G) with no output arguments draws a bar graph of the Hankel singular values such as the following:

This table describes optional input arguments for hankelsvd.

Argument	Value	Description
ERRORTYPE	'add' 'mult' 'ncf'	Regular Hankel SV's of G Hankel SV's of phase matrix
STYLE	'abs' ' log'	Absolute value logarithm scale

Algorithms

IfErrorType = 'add', then hankelsv implements the numerically robust square root method to compute the Hankel singular values [1]. Its algorithm goes as follows:

Given a stable model G, with controllability and observability grammians P and Q, compute the SVD of P and Q :

```
[Up,Sp,Vp] = svd(P);
[Uq,Sq,Vq] = svd(Q);
```

Then form the square roots of the grammians:
$\mathrm{Lr}=\mathrm{Up} \mathrm{P}^{*} \mathrm{diag}(\mathrm{sqrt}(\operatorname{diag}(\mathrm{Sp}))) ;$
$\mathrm{Lo}=\mathrm{Uq} \mathrm{q}^{*}$ diag(sqrt(diag(Sq)));
The Hankel singular values are simply:
$\sigma_{\mathrm{H}}=\operatorname{svd}\left(\right.$ Lo' ${ }^{*}$ Lr);
This method not only takes the advantages of robust SVD algorithm, but also ensure the computations stay well within the "square root" of the machine accuracy.

If ErrorType = 'mult', then hankelsv computes the Hankel singular value of the phase matrix of G [2].

If ErrorType = 'ncf', then hankelsv computes the Hankel singular value of the normalized coprime factor pair of the model [3].

References

[1] Safonov, M.G., and R.Y. Chiang, "A Schur Method for Balanced Model Reduction," IEEE Trans. on Automat. Contr., vol. AC-2, no. 7, July 1989, pp. 729-733.
[2] Safonov, M.G., and R.Y. Chiang, "Model Reduction for Robust Control: A Schur Relative Error Method," International J. of Adaptive Control and Signal Processing, Vol. 2, pp. 259-272, 1988.
[3] Vidyasagar, M., Control System Synthesis - A Factorization Approach. London: The MIT Press, 1985.

See Also

balancmr|bstmr|hankelmr|ncfmr|reduce|schurmr

Introduced before R2006a

hinffc

Full-control H-infinity synthesis

Syntax

$[K, C L, g a m m a]=$ hinffc $(P$, nmeas $)$
[K,CL, gamma] = hinffc(P, nmeas, gamTry)
[K,CL, gamma] = hinffc(P, nmeas, gamRange)
[K,CL, gamma] = hinffc(\qquad ,opts)
[K,CL,gamma,info] = hinffc(\qquad

Description

Full-control synthesis assumes the controller can directly affect both the state vector x and the error signal z. Synthesis with hinffc is the dual of the full-information problem covered by hinffi. For general H_{∞} synthesis, use hinfsyn.
[K, CL, gamma] $=$ hinffc (P, nmeas) computes the H_{∞}-optimal control law

$$
u=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=K y
$$

for the plant P . The plant is described by the state-space equations:

$$
\begin{gathered}
d x=A x+B_{1} w+u_{1} \\
z=C_{1} x+D_{11} w+u_{2} \\
y=C_{2} x+D_{21} w .
\end{gathered}
$$

Here,

- w represents the disturbance inputs
- u_{1} represents the inputs that affect the state vector
- u_{2} represents the inputs that affect the error
- z represents the error outputs to be kept small
- y represents the measurement outputs
nmeas is the number of measurements y, which must be the last outputs of P . The gain matrix K minimizes the H_{∞} norm of the closed-loop transfer function CL from the disturbance signals w to the error signals z.
[K,CL, gamma] = hinffc (P, nmeas, gamTry) calculates a gain matrix for the target performance level gamTry. Specifying gamTry can be useful when the optimal achievable performance is better than you need for your application. In that case, a less-than-optimal solution can have smaller gains and be more numerically well-conditioned. If gamTry is not achievable, hinffc returns [] for K and CL , and Inf for gamma.
[K,CL, gamma] = hinffc(P , nmeas, gamRange) searches the range gamRange for the best achievable performance. Specify the range with a vector of the form [gmin, gmax]. Limiting the
search range can speed up computation by reducing the number of iterations performed to test different performance levels.
[K,CL, gamma] = hinffc (__ , opts) specifies additional computation options. To create opts, use hinfsynOptions. Specify opts after all other input arguments.
[K,CL, gamma, info] = hinffc (__) returns a structure containing additional information about the H_{∞} synthesis computation. You can use this argument with any of the previous syntaxes.

Input Arguments

P - Plant

LTI model
Plant, specified as an LTI model such as a state-space (ss) model. If P is a generalized state-space model with uncertain or tunable control design blocks, then hinffc uses the nominal or current value of those elements.

Construct P so that it has the partitioned form

$$
\begin{gathered}
d x=A x+B_{1} w+u_{1} \\
z=C_{1} x+D_{11} w+u_{2} \\
y=C_{2} x+D_{21} w .
\end{gathered}
$$

Here,

- w represents the disturbance inputs
- u_{1} represents the inputs that affect the state vector
- u_{2} represents the inputs that affect the error
- z represents the error outputs to be kept small
- y represents the measurement outputs

Construct P such that the nmeas measurement outputs are the last outputs.
For information about conditions imposed on the plant matrices and how the software addresses them, see hinfsyn.

nmeas - Number of measurements

nonnegative integer
Number of measurement output signals in the plant, specified as a nonnegative integer. hinffc takes the last nmeas plant outputs as the measurements y. The returned gain matrix K has nmeas inputs.

gamTry - Target performance level

positive scalar
Target performance level, specified as a positive scalar. hinffc attempts to compute a gain matrix such that the H_{∞} of the closed-loop system does not exceed gamTry. If this performance level is achievable, then the returned gain matrix has gamma \leq gamTry. If gamTry is not achievable, hinffc returns an empty matrix.

gamRange - Performance range for search

[0, Inf] (default)| vector of form [gmin, gmax]

Performance range for search, specified as a vector of the form [gmin, gmax]. The hinffc command tests only performance levels within that range. It returns a gain matrix with performance:

- gamma \leq gmin, when gmin is achievable.
- gmin < gamma < gmax, when gmax is achievable and but gmin is not.
- gamma = Inf when gmax is not achievable. In this case, hinffc returns [] for K and CL.

If you know a range of feasible performance levels, specifying this range can speed up computation by reducing the number of iterations performed by hinffc to test different performance levels.

opts - Options

hinfsynOptions object
Additional options for the computation, specified as an options object you create using hinfsynOptions. Available options include displaying algorithm progress at the command line, turning off automatic scaling and regularization, and specifying an optimization method. For more information, see hinfsyn0ptions.

Output Arguments

K - Gain matrix

matrix | []
Gain matrix, returned as a matrix or []. The gain-matrix dimensions are n_{u}-by-nmeas, where n_{u} is the number of states plus the number of error outputs of P (outputs not included in nmeas).

If you supply gamTry or gamRange and the specified performance values are not achievable, then K = [].

CL - Closed-loop transfer function

ss model object | []
Closed-loop transfer function, returned as a state-space (ss) model object or []. The returned performance level gamma is the H_{∞} norm of CL.

If you supply gamTry or gamRange and the specified performance levels are not achievable, then CL = [].

gamma - Closed-loop performance

nonnegative scalar | Inf
Closed-loop performance, returned as a nonnegative scalar value or Inf. This value is the H_{∞} norm of CL. If you do not provide performance levels to test using gamTry or gamRange, then gamma is the best achievable performance level.

If you provide gamTry or gamRange, then gamma is the actual performance level achieved by the gain matrix computed for the best passing performance level that the function tries. If the specified performance levels are not achievable, then gamma $=$ Inf.

info - Synthesis data

structure | []
Additional synthesis data, returned as a structure or [] (if the specified performance level is not achievable). info has the following fields.

Field	Description
gamma	Performance level used to compute the gain matrix K, returned as a nonnegative scalar. Typically, hinffc tests multiple target performance levels and returns a gain matrix corresponding to the best passing performance level (see the Algorithms section of hinfsyn for details). The value info.gamma is an upper limit on the actual achieved performance returned as the output argument gamma.
Y	Riccati solution Y_{∞} for the performance level info. gamma, returned as matrix. For more information, see the Algorithms section of hinfsyn.
Preg	Regularized plant used for hinffc computation, returned as a state- space (ss) model object. By default, hinffc automatically adds extra disturbances and errors to the plant to ensure that it meets certain conditions (see the Algorithms section of hinfsyn). The field info. Preg contains the resulting plant model.

Algorithms

For information about the algorithms used for H_{∞} synthesis, see hinfsyn.

References

[1] Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis. "State-space solutions to standard H_{2} and H_{∞} control problems." IEEE Transactions on Automatic Control, Vol 34, Number 8, August 1989, pp. 831-847.

See Also

hinffi|hinfsyn|hinfsyn0ptions

Introduced in R2018b

hinffi

Full-information H-infinity synthesis

Syntax

[K,CL, gamma] = hinffi(P, ncont)
[K,CL, gamma] = hinffi(P, ncont, gamTry)
[K,CL,gamma] = hinffi(P, ncont, gamRange)
[K,CL,gamma] = hinffi(\qquad ,opts)
[K,CL,gamma,info] = hinffi(\qquad

Description

Full-information synthesis assumes the controller has access to both the state vector x and the disturbance signal w. Synthesis with hinffi is the dual of the full-control problem covered by hinffc. For the more general output-feedback case when only output measurements are available, use hinfsyn.

$$
\begin{aligned}
& {[\mathrm{K}, \mathrm{CL}, \text { gamma }]=\text { hinffi }(\mathrm{P}, \mathrm{ncont}) \text { computes the } H_{\infty} \text {-optimal control law }} \\
& \qquad u=K\left[\begin{array}{l}
x \\
w
\end{array}\right]
\end{aligned}
$$

for the plant P. The plant is described by the state-space equations:

$$
\begin{gathered}
d x=A x+B_{1} w+B_{2} u \\
z=C_{1} x+D_{11} w+D_{12} u .
\end{gathered}
$$

Here, w represents the disturbance inputs, and z represents the error outputs to be kept small.
ncont is the number of control inputs u, which must be the last inputs of P. The gain matrix K minimizes the H_{∞} norm of the closed-loop transfer function CL from the disturbance signals w to the error signals z.
[K, CL, gamma] = hinffi(P, ncont, gamTry) calculates a gain matrix for the target performance level gamTry. Specifying gamTry can be useful when the optimal achievable performance is better than you need for your application. In that case, a less-than-optimal solution can have smaller gains and be more numerically well-conditioned. If gamTry is not achievable, hinffi returns [] for K and CL, and Inf for gamma.
$[K, C L$, gamma $]=$ hinffi $(P$, ncont, gamRange $)$ searches the range gamRange for the best achievable performance. Specify the range with a vector of the form [gmin, gmax]. Limiting the search range can speed up computation by reducing the number of iterations performed to test different performance levels.
[K,CL,gamma] = hinffi(__ ,opts) specifies additional computation options. To create opts, use hinfsynOptions. Specify opts after all other input arguments.
[K,CL,gamma,info] = hinffi(\qquad) returns a structure containing additional information about the H_{∞} synthesis computation. You can use this argument with any of the previous syntaxes.

Input Arguments

P - Plant

LTI model
Plant, specified as an LTI model such as a state-space (ss) model. If P is a generalized state-space model with uncertain or tunable control design blocks, then hinffi uses the nominal or current value of those elements.

Construct P so that it has the partitioned form

$$
\begin{gathered}
d x=A x+B_{1} w+B_{2} u \\
z=C_{1} x+D_{11} w+D_{12} u .
\end{gathered}
$$

Here, w represents the disturbance inputs, and z represents the error outputs to be kept small. The ncont control inputs u are the last inputs.

For information about conditions imposed on the plant matrices and how the software addresses them, see hinfsyn.

ncont - Number of controls

nonnegative integer
Number of control input signals in the plant, specified as a nonnegative integer. hinffi takes the last ncont plant inputs as the control u. The returned gain matrix K has ncont outputs.

gamTry - Target performance level

positive scalar

Target performance level, specified as a positive scalar. hinffi attempts to compute a gain matrix such that the H_{∞} of the closed-loop system does not exceed gamTry. If this performance level is achievable, then the returned gain matrix has gamma \leq gamTry. If gamTry is not achievable, hinffi returns an empty matrix.
gamRange - Performance range for search
[0, Inf] (default) | vector of form [gmin, gmax]
Performance range for search, specified as a vector of the form [gmin, gmax]. The hinffi command tests only performance levels within that range. It returns a gain matrix with performance:

- gamma \leq gmin, when gmin is achievable.
- gmin < gamma < gmax, when gmax is achievable and but gmin is not.
- gamma = Inf when gmax is not achievable. In this case, hinffi returns [] for K and CL.

If you know a range of feasible performance levels, specifying this range can speed up computation by reducing the number of iterations performed by hinffi to test different performance levels.

opts - Options

hinfsynOptions object
Additional options for the computation, specified as an options object you create using hinfsyn0ptions. Available options include displaying algorithm progress at the command line, turning off automatic scaling and regularization, and specifying an optimization method. For more information, see hinfsyn0ptions.

Output Arguments

K - Gain matrix

matrix | []
Gain matrix, returned as a matrix or []. The gain-matrix dimensions are ncont-by- n_{y} where n_{y} is the number of states plus the number disturbance inputs of P (inputs not included in ncont).

If you supply gamTry or gamRange and the specified performance values are not achievable, then K = [].

CL - Closed-loop transfer function

ss model object | []
Closed-loop transfer function, returned as a state-space (ss) model object or []. The returned performance level gamma is the H_{∞} norm of CL.

If you supply gamTry or gamRange and the specified performance levels are not achievable, then CL = [].

gamma - Closed-loop performance

nonnegative scalar | Inf
Closed-loop performance, returned as a nonnegative scalar value or Inf. This value is the H_{∞} norm of CL. If you do not provide performance levels to test using gamTry or gamRange, then gamma is the best achievable performance level.

If you provide gamTry or gamRange, then gamma is the actual performance level achieved by the gain matrix computed for the best passing performance level that the function tries. If the specified performance levels are not achievable, then gamma = Inf.

info - Synthesis data

structure | []
Additional synthesis data, returned as a structure or [] (if the specified performance level is not achievable). info has the following fields

Field	Description
gamma	Performance level used to compute the gain matrix K, returned as a nonnegative scalar. Typically, hinffi tests multiple target performance levels and returns a gain matrix corresponding to the best passing performance level (see the Algorithms section of hinfsyn for details). The value info. gamma is an upper limit on the actual achieved performance returned as the output argument gamma.
X	Riccati solution X_{∞} for the performance level info. gamma, returned as a matrix. For more information, see the Algorithms section of hinfsyn.
Preg	Regularized plant used for hinffi computation, returned as a state-space (ss) model object. By default, hinffi automatically adds extra disturbances and errors to the plant to ensure that it meets certain conditions (see the Algorithms section of hinfsyn). The field info. Preg contains the resulting plant model.

Algorithms

For information about the algorithms used for H_{∞} synthesis, see hinfsyn.

References

[1] Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis. "State-space solutions to standard H_{2} and H_{∞} control problems." IEEE Transactions on Automatic Control, Vol 34, Number 8, , August 1989, pp. 831-847.

See Also

hinffc|hinfsyn|hinfsynOptions

Introduced in R2018b

hinfgs

Synthesis of gain-scheduled H_{∞} controllers

Syntax

[gopt, pdK,R,S] = hinfgs(pdP,r,gmin,tol,tolred)

Description

Given an affine parameter-dependent plant

$$
P\left\{\begin{array}{c}
\dot{x}=A(p) x+B_{1}(p) w+B_{2} u \\
z=C_{1}(p) x+D_{11}(p) w+D_{12} u \\
y=C_{2} x+D_{21} w+D_{22} u
\end{array}\right.
$$

where the time-varying parameter vector $p(t)$ ranges in a box and is measured in real time, hinfgs seeks an affine parameter-dependent controller

$$
K\left\{\begin{array}{l}
\dot{\zeta}=A_{K}(p) \zeta+B_{K}(p) y \\
u=C_{K}(p) \zeta+D_{K}(P) y
\end{array}\right.
$$

scheduled by the measurements of $p(t)$ and such that

- K stabilizes the closed-loop system

for all admissible parameter trajectories $p(t)$
- K minimizes the closed-loop quadratic H_{∞} performance from w to z.

The description pdP of the parameter-dependent plant P is specified with psys and the vector r gives the number of controller inputs and outputs (set $\mathrm{r}=\left[\mathrm{p} 2\right.$, m2] if $y \in R^{p 2}$ and $u \in R^{m 2}$). Note that hinfgs also accepts the polytopic model of P returned, e.g., by aff2pol.
hinfgs returns the optimal closed-loop quadratic performance gopt and a polytopic description of the gain-scheduled controller pdK. To test if a closed-loop quadratic performance γ is achievable, set the third input gmin to γ. The arguments tol and tol red control the required relative accuracy on gopt and the threshold for order reduction. Finally, hinfgs also returns solutions R, S of the characteristic LMI system.

Controller Implementation

The gain-scheduled controller pdK is parametrized by $p(t)$ and characterized by the values $K_{\Pi j}$ of $\left(\begin{array}{ll}A_{K}(p) & B_{K}(p) \\ C_{K}(p) & D_{K}(p)\end{array}\right)$ at the corners ${ }^{3}{ }_{j}$ of the parameter box. The command

Kj = psinfo(pdK,'sys',j)
returns the j-th vertex controller $K_{\Pi j}$ while

```
pv = psinfo(pdP,'par')
```

vertx = polydec(pv)

Pj = vertx (:, j$)$
gives the corresponding corner ${ }_{j}{ }_{j}$ of the parameter box ($p v$ is the parameter vector description).
The controller scheduling should be performed as follows. Given the measurements $p(t)$ of the parameters at time t,

1 Express $p(t)$ as a convex combination of the ${ }_{j}{ }_{j}$:

$$
p(t)=\alpha_{1} 3_{1}+\ldots+\alpha_{N}{ }^{3}{ }_{N}, \alpha_{j} \geq 0, \sum_{i=1}^{N} \alpha_{j}=1
$$

This convex decomposition is computed by polydec.
2 Compute the controller state-space matrices at time t as the convex combination of the vertex controllers $K_{\Pi j}$:
$\left(\begin{array}{ll}A_{K}(t) & B_{K}(t) \\ C_{K}(t) & D_{K}(t)\end{array}\right)=\sum_{i=1}^{N} \alpha_{j} K_{\Pi_{l}}$.
3 Use $A_{K}(t), \mathrm{B}_{K}(t), \mathrm{C}_{K}(t), \mathrm{D}_{K}(t)$ to update the controller state-space equations.

References

Apkarian, P., P. Gahinet, and G. Becker, "Self-Scheduled H_{∞} Control of Linear Parameter-Varying Systems," Automatica, 31 (1995), pp. 1251-1261.

Becker, G., Packard, P., "Robust Performance of Linear-Parametrically Varying Systems Using Parametrically-Dependent Linear Feedback," Systems and Control Letters, 23 (1994), pp. 205-215.

Packard, A., "Gain Scheduling via Linear Fractional Transformations," Syst. Contr. Letters, 22 (1994), pp. 79-92.

See Also
pdsimul|polydec|psys | pvec
Introduced before R2006a

hinfnorm

H_{∞} norm of dynamic system

Syntax

ninf = hinfnorm(sys)
ninf $=$ hinfnorm(sys,tol)
[ninf,fpeak] = hinfnorm(\qquad)

Description

ninf $=$ hinfnorm(sys) returns the H_{∞} norm in absolute units of the dynamic system model, sys.

- If sys is a stable SISO system, then the H_{∞} norm is the peak gain, the largest value of the frequency response magnitude.
- If sys is a stable MIMO system, then the H_{∞} norm is the largest singular value across frequencies.
- If sys is an unstable system, then the H_{∞} norm is defined as Inf.
- If sys is a model that has tunable or uncertain parameters, then hinfnorm evaluates the H_{∞} norm at the current or nominal value of sys.
- If is a model array, then hinfnorm returns an array of the same size as sys, where ninf(k) = hinfnorm(sys(:, :,k)).

For stable systems, hinfnorm(sys) is the same as getPeakGain(sys).
ninf $=$ hinfnorm(sys,tol) returns the H_{∞} norm of sys with relative accuracy tol.
[ninf,fpeak] = hinfnorm (__) also returns the frequency, fpeak, at which the peak gain or largest singular value occurs. You can use this syntax with any of the input arguments in previous syntaxes. If sys is unstable, then fpeak = Inf.

Examples

Norm of MIMO System

Compute the H_{∞} norm of the following 2-input, 2-output dynamic system and the frequency at which the peak singular value occurs.

```
    G(s)=[}[\begin{array}{cc}{0}&{\frac{3s}{\mp@subsup{s}{}{2}+s+10}}\\{\frac{s+1}{s+5}}&{\frac{2}{s+6}}\end{array}]
G = [0 tf([3 0],[1 1 10]);tf([1 1],[1 5]),tf(2,[1 6])];
[ninf,fpeak] = hinfnorm(G)
ninf = 3.0150
fpeak = 3.1623
```

The H_{∞} norm of a MIMO system is its maximum singular value. Plot the singular values of G and compare the result from hinfnorm.
sigma(G), grid

The values ninf and fpeak are consistent with the singular value plot, which displays the values in dB.

Input Arguments

sys - Input dynamic system
dynamic system model | model array
Input dynamic system, specified as any dynamic system model or model array. sys can be SISO or MIMO.

tol - Relative accuracy

0.01 (default) | positive real scalar

Relative accuracy of the peak gain, specified as a positive real scalar value. hinfnorm calculates ninf such that the fractional difference between ninf and the true H_{∞} norm of sys is no greater than tol.

Output Arguments

ninf $\boldsymbol{-} \boldsymbol{H}_{\infty}$ norm of dynamic system

Inf | scalar | array
H_{∞} norm of sys, returned as Inf, a scalar value, or an array.

- If sys is a single stable model, then ninf is a scalar value.
- If sys is a single unstable model, then ninf is Inf.
- If sys is a model array, then ninf is an array of the same size as sys, where $\operatorname{ninf}(k)=$ hinfnorm(sys(:,:,k)).
fpeak - Frequency of peak gain or largest singular value
Inf | nonnegative real scalar | array
Frequency at which the peak gain or largest singular value occurs, returned as Inf, a nonnegative real scalar value, or an array. The frequency is expressed in units of rad/TimeUnit, relative to the TimeUnit property of sys.
- If sys is a single stable model, then fpeak is a scalar.
- If sys is a single unstable model, then fpeak is Inf.
- If sys is a model array, then fpeak is an array of the same size as sys.In this case, fpeak(k) is the peak gain or largest singular value frequency of the k th model in the array.

See Also

freqresp| getPeakGain|norm|sigma

Introduced in R2013b

hinfstruct

H_{∞} tuning of fixed-structure controllers

Syntax

CL = hinfstruct(CL0)
[CL,gamma,info] = hinfstruct(CL0)
[CL, gamma,info] = hinfstruct(CL0,options)
[C,gamma,info] = hinfstruct(P,C0,options)

Description

CL $=$ hinfstruct (CL0) tunes the free parameters of the tunable genss model CL0. This tuning minimizes the H_{∞} norm of the closed-loop transfer function modeled by CL0. The model CL0 represents a closed-loop control system that includes tunable components such as controllers or filters. CL0 can also include weighting functions that capture design requirements.
[CL,gamma,info] = hinfstruct(CL0) returns gamma (the minimum H_{∞} norm) and a data structure info with additional information about each optimization run.
[CL,gamma,info] = hinfstruct(CL0,options) allows you to specify additional options for the optimizer using hinfstructOptions.
[C,gamma,info] = hinfstruct($\mathrm{P}, \mathrm{C} 0$, options) tunes the parametric controller blocks C0. This tuning minimizes the H_{∞} norm of the closed-loop system CL0 $=l \mathrm{lt}(\mathrm{P}, \mathrm{C0})$. To use this syntax, express your control system and design requirements as a Standard Form model, as in the following illustration:

P is a numeric LTI model that includes the fixed elements of the control architecture. P can also include weighting functions that capture design requirements. C0 can be a single tunable component
(for example, a Control Design Block (Control System Toolbox) or a genss model) or a cell array of multiple tunable components. C is a parametric model or array of parametric models of the same types as C0.

Input Arguments

CL0

Generalized state-space (genss) model describing the weighted closed-loop transfer function of a control system. CL0 includes both the fixed and tunable components of the control system. The tunable components of the control system are represented as control design blocks (Control System Toolbox), and are stored in the CL0.Blocks property of the genss model. hinfstruct adjusts the tunable parameters of the control design blocks in CL0 to minimize the H_{∞} norm of the weighted transfer function. For more information about constructing this generalized model, see "Build Tunable Closed-Loop Model for Tuning with hinfstruct".

CL0 can be a continuous-time or discrete-time model. In discrete time, the sample time must be specified ($T s \neq-1$).

CL0 can be an array of models, allowing you to tune a set of controller parameters for multiple models simultaneously. For example, the multiple models might represent different system configurations, different operating points, or different failure modes of a system.

CL0 can include uncertain control design blocks as well as tunable blocks. If CL0 has uncertain blocks, hinfstruct performs robust tuning.

P

Numeric LTI model representing the fixed elements of the control architecture to be tuned. P can also include weighting functions that capture design requirements. You can obtain P in two ways:

- In MATLAB, model the fixed elements of your control system as numeric LTI models. Then, use block-diagram building functions (such as connect and feedback) to build P from the modeled components. Also include any weighting functions that represent your design requirements.
- If you have a Simulink model of your control system and have Simulink Control Design ${ }^{\mathrm{Tm}}$, use linlft to obtain a linear model of the fixed elements of your control system. The linlft command linearizes your Simulink model, excluding specified Simulink blocks (the blocks that represent the controller elements you want to tune). If you are using weighting functions to represent your design requirements, connect them in series with the linear model of your plant to obtain P.

P can be a continuous-time or discrete-time model. In discrete time, the sample time must be specified ($\mathrm{T} s \neq-1$), and must match the sample time of C0.

C0

Single tunable component or cell array of tunable components of the control structure.
Each entry in C0 represents one tunable element of your control architecture, such as a PID controller, a gain block, or a fixed-order transfer function. The entries of C0 can be Control Design Blocks (Control System Toolbox) or genss models.

For more information and examples of creating tunable models, see "Models with Tunable Coefficients" (Control System Toolbox) in the Control System Toolbox User's Guide.

C0 can be a continuous-time or discrete-time model, as long as the sample time matches that of P.

options

Set of options for hinfstruct. Use hinfstructOptions to define options. For information about the available options, see the hinfstruct0ptions reference page.

Output Arguments

CL

Tuned version of the generalized state-space (genss) model CL0.
The hinfstruct command tunes the free parameters of CL0 to achieve a minimum H_{∞} norm. CL. Blocks contains the same types of Control Design Blocks as CL0. Blocks, except that in CL, the parameters have tuned values.

To access the tuned parameter values, use getValue. You can also access them directly in CL.Blocks.

C

Tuned versions of the parametric models C0.
When C0 is a single parametric model, C is a parametric model of the same type, with tuned parameter values.

When C0 is a cell array of parametric models, C is also a cell array. The entries in C are parametric models of the same type as the corresponding entries in C0.

gamma

Best achieved value for the closed-loop H_{∞} norm.
In some cases, hinfstruct performs more than one minimization run (when the hinfstruct0ptions option RandomStarts >0). In such cases, gamma is the smallest H_{∞} norm of all runs.

info

Data structure array containing results from each optimization run. The fields of info are:

- Objective - Minimum H_{∞} norm value for each run.

When RandomStarts = 0, Objective = gamma.

- Iterations - Number of iterations before convergence for each run.
- TunedBlocks - Tuned control design blocks for each run.

TunedBlocks differs from C in that C contains only the result from the best run. When RandomStarts $=0$, TunedBlocks $=C$.

Tips

- hinfstruct is related to hinfsyn, which also uses H_{∞} techniques to design a controller for a MIMO plant. However, unlike hinfstruct, hinfsyn imposes no restriction on the structure and order of the controller. For that reason, hinfsyn always returns a smaller gamma than hinfstruct. You can therefore use hinfsyn to obtain a lower bound on the best achievable performance.
- Using hinfstruct requires some familiarity with H_{∞} techniques. It requires expressing your design requirements as frequency-weighting functions on plant inputs and outputs, as described in "Formulating Design Requirements as H-Infinity Constraints". For a simpler approach to fixedstructure tuning, use systune or looptune.

Algorithms

hinfstruct uses specialized nonsmooth optimization techniques to enforce closed-loop stability and minimize the H_{∞} norm as a function of the tunable parameters. These techniques are based on the work in [1].
hinfstruct computes the H_{∞} norm using the algorithm of [2] and structure-preserving eigensolvers from the SLICOT library. For more information about the SLICOT library, see http://slicot.org.

References

[1] P. Apkarian and D. Noll, "Nonsmooth H-infinity Synthesis," IEEE Transactions on Automatic Control, Vol. 51, Number 1, 2006, pp. 71-86.
[2] Bruisma, N.A. and M. Steinbuch, "A Fast Algorithm to Compute the H_{∞}-Norm of a Transfer Function Matrix," System Control Letters, 14 (1990), pp. 287-293.

Extended Capabilities

Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox ${ }^{\mathrm{TM}}$.
To run in parallel, set 'UseParallel' to true using hinfstruct0ptions.

See Also

genss | getValue | hinfstruct0ptions | hinfsyn| looptune| systune

Topics

"Build Tunable Closed-Loop Model for Tuning with hinfstruct"
"Fixed-Structure H-infinity Synthesis with HINFSTRUCT"
"What Is hinfstruct?"
"Formulating Design Requirements as H-Infinity Constraints"
"Structured H-Infinity Synthesis Workflow"
"Models with Tunable Coefficients" (Control System Toolbox)

Introduced in R2010b

hinfstructOptions

Set options for hinfstruct

Syntax

options = hinfstructOptions
options $=$ hinfstructOptions(Name, Value)

Description

options $=$ hinfstructOptions returns the default option set for the hinfstruct command.
options = hinfstructOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
hinfstruct0ptions takes the following Name arguments:

Display

Determines the amount of information to display during hinfstruct optimization runs.
Display takes the following values:

- 'off' - hinfstruct runs in silent mode, displaying no information during or after the run.
- 'iter' - Display optimization progress after each iteration. The display includes the value of the closed-loop H_{∞} norm after each iteration. The display also includes a Progress value indicating the percent change in the H_{∞} norm from the previous iteration.
- 'final' - Display a one-line summary at the end of each optimization run. The display includes the minimized value of the closed-loop H_{∞} norm and the number of iterations for each run.

Default: 'final'

MaxIter

Maximum number of iterations in each optimization run.
Default: 300
RandomStart
Number of additional optimizations starting from random values of the free parameters in the controller.

If RandomStart = 0, hinfstruct performs a single optimization run starting from the initial values of the tunable parameters. Setting RandomStart $=\mathrm{N}>0$ runs N additional optimizations starting from N randomly generated parameter values.
hinfstruct finds a local minimum of the gain minimization problem. To increase the likelihood of finding parameter values that meet your design requirements, set RandomStart > 0. You can then use the best design that results from the multiple optimization runs.

Use with UseParallel = true to distribute independent optimization runs among MATLAB workers (requires Parallel Computing Toolbox ${ }^{\mathrm{TM}}$ software).

Default: 0

UseParallel

Parallel processing flag.
Set to true to enable parallel processing by distributing randomized starts among workers in a parallel pool. If there is an available parallel pool, then the software performs independent optimization runs concurrently among workers in that pool. If no parallel pool is available, one of the following occurs:

- If Automatically create a parallel pool is selected in your Parallel Computing Toolbox preferences (Parallel Computing Toolbox), then the software starts a parallel pool using the settings in those preferences.
- If Automatically create a parallel pool is not selected in your preferences, then the software performs the optimization runs successively, without parallel processing.

If Automatically create a parallel pool is not selected in your preferences, you can manually start a parallel pool using parpool before running the tuning command.

Using parallel processing requires Parallel Computing Toolbox software.
Default: false
TargetGain
Target H_{∞} norm.
The hinfstruct optimization stops when the H_{∞} norm (peak closed-loop gain) falls below the specified TargetGain value.

Set TargetGain = 0 to optimize controller performance by minimizing the peak closed-loop gain. Set TargetGain = Inf to just stabilize the closed-loop system.

Default: 0

TolGain

Relative tolerance for termination. The optimization terminates when the H_{∞} norm decreases by less than TolGain over 10 consecutive iterations. Increasing TolGain speeds up termination, and decreasing TolGain yields tighter final values.

Default: 0.001

MaxFrequency

Maximum closed-loop natural frequency.
Setting MaxFrequency constrains the closed-loop poles to satisfy $|\mathrm{p}|<$ MaxFrequency.
To let hinfstruct choose the closed-loop poles automatically based upon the system's open-loop dynamics, set MaxFrequency = Inf. To prevent unwanted fast dynamics or high-gain control, set MaxFrequency to a finite value.

Specify MaxFrequency in units of 1/TimeUnit, relative to the TimeUnit property of the system you are tuning.

Default: Inf

MinDecay

Minimum decay rate for closed-loop poles
Constrains the closed-loop poles to satisfy $\operatorname{Re}(\mathrm{p})<-\operatorname{MinDecay}$. Increase this value to improve the stability of closed-loop poles that do not affect the closed-loop gain due to pole/zero cancellations.

Specify MinDecay in units of 1/TimeUnit, relative to the TimeUnit property of the system you are tuning.

Default: 1e-7

Output Arguments

options
Option set containing the specified options for the hinfstruct command.

Examples

Create Options Set for hinfstruct

Create an options set for a hinfstruct run using three random restarts and a stability offset of 0.001 . Also, configure the hinfstruct run to stop as soon as the closed-loop gain is smaller than 1 .

```
options = hinfstructOptions('TargetGain',1,...
    'RandomStart',3,'Stable0ffset',1e-3);
```

Alternatively, use dot notation to set the values of options.

```
options = hinfstructOptions;
options.TargetGain = 1;
options.RandomStart = 3;
options.StableOffset = 1e-3;
```


Configure Option Set for Parallel Optimization Runs

Configure an option set for a hinfstruct run using 20 random restarts. Execute these independent optimization runs concurrently on multiple workers in a parallel pool.

If you have the Parallel Computing Toolbox software installed, you can use parallel computing to speed up hinfstruct tuning of fixed-structure control systems. When you run multiple randomized hinfstruct optimization starts, parallel computing speeds up tuning by distributing the optimization runs among workers.

If Automatically create a parallel pool is not selected in your Parallel Computing Toolbox preferences (Parallel Computing Toolbox), manually start a parallel pool using parpool. For example:
parpool;
If Automatically create a parallel pool is selected in your preferences, you do not need to manually start a pool.

Create an hinfstruct0ptions set that specifies 20 random restarts to run in parallel.
options = hinfstructOptions('RandomStart',20,'UseParallel', true);
Setting UseParallel to true enables parallel processing by distributing the randomized starts among available workers in the parallel pool.

Use the hinfstructOptions set when you call hinfstruct. For example, suppose you have already created a tunable closed loop model CL0. In this case, the following command uses parallel computing to tune CL0.
[CL,gamma,info] = hinfstruct(CL0,options);

See Also

hinfstruct

Introduced in R2010b

hinfsyn

Compute H-infinity optimal controller

Syntax

[K,CL,gamma] = hinfsyn(P, nmeas,ncont)
[K,CL,gamma] = hinfsyn(P, nmeas, ncont, gamTry)
[K,CL,gamma] = hinfsyn(P,nmeas,ncont,gamRange)
[K,CL,gamma] = hinfsyn(,opts)
[K,CL,gamma,info] = hinfsyn(\qquad

Description

[K, CL, gamma] $=$ hinfsyn(P, nmeas, ncont) computes a stabilizing H_{∞}-optimal controller K for the plant P. The plant has a partitioned form

$$
\left[\begin{array}{l}
z \\
y
\end{array}\right]=\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]\left[\begin{array}{l}
w \\
u
\end{array}\right],
$$

where:

- w represents the disturbance inputs.
- u represents the control inputs.
- z represents the error outputs to be kept small.
- y represents the measurement outputs provided to the controller.
nmeas and ncont are the number of signals in y and u, respectively. y and u are the last outputs and inputs of P, respectively. hinfsyn returns a controller K that stabilizes P and has the same number of states. The closed-loop system $C L=l f t(P, K)$ achieves the performance level gamma, which is the H_{∞} norm of CL (see hinfnorm).
[K,CL, gamma] = hinfsyn (P, nmeas, ncont, gamTry) calculates a controller for the target performance level gamTry. Specifying gamTry can be useful when the optimal controller performance is better than you need for your application. In that case, a less-than-optimal controller can have smaller gains and be more numerically well-conditioned. If gamTry is not achievable, hinfsyn returns [] for K and CL, and Inf for gamma.
[K,CL, gamma] = hinfsyn(P, nmeas, ncont, gamRange) searches the range gamRange for the best achievable performance. Specify the range with a vector of the form [gmin, gmax]. Limiting the search range can speed up computation by reducing the number of iterations performed by hinfsyn to test different performance levels.
[K, CL, gamma] = hinfsyn(__, opts) specifies additional computation options. To create opts, use hinfsyn0ptions. Specify opts after all other input arguments.
[K,CL,gamma,info] = hinfsyn(\qquad) returns a structure containing additional information about the H_{∞} synthesis computation. $\overline{\text { You can }}$ use this argument with any of the previous syntaxes.

Examples

H-Infinity Controller Synthesis

Synthesize a controller using different target performance levels. The plant in this example is based on the augmented plant model used in "Robust Control of an Active Suspension". Load the plant.

```
load hinfsynExData P
size(P)
State-space model with 5 outputs, 4 inputs, and 9 states.
```

This plant has five outputs and four inputs, where the last two outputs are measurement signals to provide to the controller, and the last input is a control signal. Compute an H_{∞}-optimal controller.

```
ncont = 1;
nmeas = 2;
[K1,CL,gamma] = hinfsyn(P,nmeas,ncont);
```

The resulting two-input, one-output controller has the same number of states as P.

```
size(K1)
```

State-space model with 1 outputs, 2 inputs, and 9 states.

The optimal performance level achieved by this controller is returned as gamma. This value is the H_{∞} norm of the closed-loop system CL.
gamma
gamma $=0.9405$
You can examine the singular value plot of the closed-loop system to confirm that its largest singular value does not exceed gamma.
sigma(CL,ss(gamma))
ylim([-120,20]);

Controller Synthesis with Target Performance Level

For controllers that are close to optimal performance, controller gains can sometimes get large. If you know that your application does not require the optimal achievable performance level, you can limit the range of γ values that hinfsyn tests. Suppose you know that $\gamma \approx 1.5$ is good enough for your application. Using the same plant as in the example "H-Infinity Controller Synthesis" on page 1-220, compute a controller using a target performance range of [1.4,1.6]. Turn on the display to see the progress of the computation.

```
load hinfsynExData P
ncont = 1;
nmeas = 2;
opts = hinfsynOptions('Display','on');
gamRange = [1.4 1.6];
[K,CL,gamma,info] = hinfsyn(P,nmeas,ncont,gamRange,opts);
Test bounds: 1.4 <= gamma <= 1.6
gamma \(\quad X>=0 \quad Y>=0 \quad\) rho \((X Y)<1 \quad p / f\)
    1.60e+00 4.9e-07 0.0e+00 1.462e-02 p
    1.50e+00 5.0e-07 0.0e+00 1.681e-02 p
    1.45e+00 5.0e-07 0.0e+00 1.803e-02 p
    1.42e+00 5.0e-07 0.0e+00 1.868e-02 p
```

$1.41 e+00 \quad 5.0 \mathrm{e}-07 \quad 0.0 \mathrm{e}+00 \quad 1.902 \mathrm{e}-02 \quad \mathrm{p}$

Best performance (actual): 0.946
The display shows all the performance levels tested by hinfsyn. In this case, all tested performance levels pass the tests that hinfsyn applies for closed-loop stability (see "Algorithms" on page 1-228). Although the smallest tested level is 1.41, the controller returned for that value achieves an actual performance level of gamma, which is about 0.95 . The smallest tested level is returned in the gamma field of the info structure.

```
info.gamma
ans = 1.4117
```

If you try to obtain a performance level that is not achievable with any controller, the display informs you that the target is too small, and returns an empty controller and closed-loop system. For example, suppose you try to achieve a performance level of 0.75.

```
gamTry = 0.75
gamTry = 0.7500
[K,CL,gamma] = hinfsyn(P,nmeas,ncont,gamTry,opts)
Specified upper limit GMAX=0.75 is too small, needs to be greater than 0.94.
K =
    []
CL =
    []
gamma = Inf
```


Mixed-Sensitivity Synthesis

Design a mixed-sensitivity controller for the following plant, augmented by the following loop-shaping filters (see mixsyn).

$$
G(s)=\frac{s-1}{s+1}, W_{1}=\frac{0.1(s+100)}{100 s+1}, W_{2}=0.1, \text { no } W_{3} .
$$

Define the plant, weighting filters, and augmented plant.

```
s = zpk('s');
G = (s-1)/(s+1);
W1 = 0.1*(s+100)/(100*s+1);
W2 = 0.1;
W3 = [];
P = augw(G,W1,W2,W3);
```

Synthesize the controller.
[K,CL, gamma] = hinfsyn $(P, 1,1)$;
gamma
gamma $=0.1831$
For this system, gamma is about 0.18 , or about -15 dB .
Examine the singular values of the closed-loop result.
sigma(CL,ss(gamma))

Singular Values

Compute a new controller for the same system with no W_{1}.
W 1 = [];
P = augw(G,W1,W2,W3);
[K,CL,gamma] = hinfsyn(P,1,1);
In this case, the resulting controller K is zero, and the closed-loop transfer function $\mathrm{CL}=\mathrm{K}^{*}\left(1+\mathrm{G}^{*} \mathrm{~K}\right)$ is also zero.

Input Arguments

P - Plant

dynamic system model

Plant, specified as a dynamic system model such as a state-space (ss) model. P can be any LTI model with inputs $[w ; u]$ and outputs $[z ; y]$, where:

- w represents the disturbance inputs.
- u represents the control inputs.
- z represents the error outputs to be kept small.
- y represents the measurement outputs provided to the controller.

Construct P such that measurement outputs y are the last outputs, and the control inputs u are the last inputs.

The function converts P to a state-space model of the form:

$$
\begin{gathered}
d x=A x+B_{1} w+B_{2} u \\
z=C_{1} x+D_{11} w+D_{12} u \\
y=C_{2} x+D_{21} w+D_{22} u
\end{gathered}
$$

If P is a generalized state-space model with uncertain or tunable control design blocks, then hinfsyn uses the nominal or current value of those elements.

One application of H_{∞} control is direct shaping of closed-loop singular value plots of control systems. In such applications, you augment the plant inputs and outputs with weighting functions (loopshaping filters) that represent control objectives that you want the H_{∞} controller to satisfy. For a detailed example that constructs such a partitioned, augmented plant for H_{∞} synthesis, see "Robust Control of an Active Suspension". For further information, see "Mixed-Sensitivity Loop Shaping".

Conditions on \mathbf{P}

For the H_{∞} synthesis problem to be solvable, $\left(A, B_{2}\right)$ must be stabilizable, and $\left(A, C_{2}\right)$ must be detectable. For the default Riccati method, the plant is further restricted in that P_{12} and P_{21} must have no zeros on the imaginary axis (continuous-time plants) or the unit circle (discrete-time plants). In continuous time, this restriction means that

$$
\left[\begin{array}{cc}
A-j \omega & B_{2} \\
C_{1} & D_{12}
\end{array}\right]
$$

has full column rank for all frequencies ω. By default, hinfsyn automatically adds extra disturbances and errors to the plant to ensure that the restriction on P_{12} and P_{21} is met. This process is called regularization. If you are certain your plant meets the conditions, you can turn off regularization using the Regularize option of hinfsynOptions.

nmeas - Number of measurement outputs

1 (default) | nonnegative integer
Number of measurement output signals in the plant, specified as a nonnegative integer. The function takes the last nmeas plant outputs as the measurements y. The returned controller K has nmeas inputs.

ncont - Number of control inputs

1 (default) | nonnegative integer
Number of control input signals in the plant, specified as a nonnegative integer. The function takes the last ncont plant inputs as the controls u. The returned controller K has ncont outputs.

gamTry - Target performance level

positive scalar

Target performance level, specified as a positive scalar. hinfsyn attempts to compute a controller such that the H_{∞} of the closed-loop system does not exceed gamTry. If this performance level is achievable, then the returned controller has gamma \leq gamTry. If gamTry is not achievable, hinfsyn returns an empty controller.

gamRange - Performance range for search

[0,Inf] (default) | vector of form [gmin, gmax]
Performance range for search, specified as a vector of the form [gmin, gmax]. The hinfsyn command tests only performance levels within that range. It returns a controller with performance:

- gamma \leq gmin, when gmin is achievable.
- gmin < gamma < gmax, when gmax is achievable and but gmin is not.
- gamma = Inf when gmax is not achievable. In this case, hinfsyn returns [] for K and CL.

If you know a range of feasible performance levels, specifying this range can speed up computation by reducing the number of iterations performed by hinfsyn to test different performance levels.

opts - Additional options

hinfsynOptions object
Additional options for the computation, specified as an options object you create using hinfsynOptions. Available options include:

- Display algorithm progress at the command line.
- Turn off automatic scaling and regularization.
- Specify an optimization method.

For information about all options, see hinfsynOptions.

Output Arguments

K - Controller

ss model object | []
Controller, returned as a state-space (ss) model object or []. The controller stabilizes P and has the same number of states as P. The controller has nmeas inputs and ncont outputs.

If you supply gamTry or gamRange and the specified performance values are not achievable, then K $=[]$.

CL - Closed-loop transfer function

ss model object | []
Closed-loop transfer function, returned as a state-space (ss) model object or []. The closed-loop transfer function is given by $\mathrm{CL}=\mathrm{lft}(\mathrm{P}, \mathrm{K})$ as in the following diagram.

The returned performance level gamma is the H_{∞} norm of CL .
If you supply gamTry or gamRange and the specified performance levels are not achievable, then CL $=[]$.

gamma - Controller performance

nonnegative scalar | Inf

Controller performance, returned as a nonnegative scalar value or Inf. This value is the performance achieved using the returned controller K , and is the H_{∞} norm of CL (see hinfnorm). If you do not provide performance levels to test using gamTry or gamRange, then gamma is the best achievable performance level.

If you provide gamTry or gamRange, then gamma is the actual performance level achieved by the controller computed for the best passing performance level that hinfsyn tries. If the specified performance levels are not achievable, then gamma $=$ Inf.

info - Synthesis data

structure | []

Additional synthesis data, returned as a structure or [] (if the specified performance level is not achievable). For the default Riccati-based synthesis method, info has the following fields.

Field	Description
gamma	Performance level used to compute the controller K, returned as a nonnegative scalar. Typically, hinfsyn tests multiple target performance levels and returns a controller corresponding to the best passing performance level (see "Algorithms" on page 1-228). The value info. gamma is an upper limit on the actual achieved performance returned as the output argument gamma.
X, Y	Riccati solutions X_{∞} and Y_{∞} for the performance level info.gamma, returned as nonnegative scalars. For more information, see "Algorithms" on page 1-228 and [5].
Ku, Kw	State feedback gains of controller K expressed in observer form, returned as matrices. For more information about the observer-form controller, see "Tips" on page 1-228.

Field	Description
Lx, Lu	Observer gains of controller K expressed in observer form, returned as matrices. For more information about the observer-form controller, see "Tips" on page 1-228.
Preg	Regularized plant used for hinfsyn computation, returned as a state- space (ss) model object. By default, hinfsyn automatically adds extra disturbances and errors to the plant to ensure that it meets certain conditions (see the input argument P). The field info.Preg contains the resulting plant model.
AS	All-solutions controller on page 1-227 parameterization, returned as a state-space (ss) model object.

For the LMI-based synthesis method, info contains the best performance gamma and the corresponding LMI solutions R and S. (Use hinfsynOptions to change the synthesis method.)

More About

All-solutions controller

In general, the solution to the infinity-norm optimal control problem is nonunique. The controller returned by hinfsyn is only one particular solution, K. For the default Riccati-based method, info. AS contains the all-solution controller parameterization $K_{A S}$. All solutions with closed-loop performance of γ or less are parameterized by a free stable contraction map Q, which is constrained by $\|Q\|_{\infty}<\gamma$.

In other words, the solutions include every stabilizing controller $K(s)$ that makes

$$
\left\|T_{y_{1} u_{1}}\right\|_{\infty} \triangleq \sup _{\omega} \sigma_{\max }\left(T_{y_{1} u_{1}}(j \omega)\right)<\gamma .
$$

Here, $T_{y_{1} u_{1}}$ is the closed-loop transfer function CL. These controllers $K(s)$ are given by:

```
Ks = lft(info.AS,Q)
```

where Q is a stable LTI system satisfying norm (Q, Inf) < info. gamma.

Tips

- hinfsyn gives you state-feedback gains and observer gains that you can use to express the controller in observer form. The observer form of the controller K is:

$$
\begin{gathered}
d x_{e}=A x_{e}+B_{1} w_{e}+B_{2} u+L_{\chi} e \\
u=K_{u} x_{e}+L_{u} e \\
w_{e}=K_{w} x_{e} .
\end{gathered}
$$

Here, w_{e} is an estimate of the worst-case perturbation and the innovation term e is given by:

$$
e=y-C_{2} x_{e}-D_{21} w_{e}-D_{22} u .
$$

hinfsyn returns the state-feedback gains K_{u} and K_{w} and the observer gains L_{x} and L_{u} as fields in the info output argument.

You can use this form of the controller for gain scheduling in Simulink. To do so, tabulate the plant matrices and the controller gain matrices as a function of the scheduling variables using the Matrix Interpolation block. Then, use the observer form of the controller to update the controller variables as the scheduling variables change.

Algorithms

By default, hinfsyn uses the two-Riccati formulae ([1],[2]) with loop shifting [3]. You can use hinfsyn0ptions to change to an LMI-based method ([4],[5],[6]). You can also specify a maximumentropy method. In that method, hinfsyn returns the H_{∞} controller that maximizes an entropy integral relating to the point S0. For continuous-time systems, this integral is:

$$
\text { Entropy }=\frac{\gamma^{2}}{2 \Pi} \int_{-\infty}^{\infty} \ln \left|\operatorname{det} I-\gamma^{-2} T_{y_{1} u_{1}}(j \omega)^{\prime} T_{y_{1} u_{1}}(j \omega)\right|\left[\frac{s_{0}^{2}}{s_{0}{ }^{2}+\omega^{2}}\right] d \omega
$$

where $T_{y_{1} u_{1}}$ is the closed-loop transfer function CL. A similar integral is used for discrete-time systems.

For all methods, the function uses a standard γ-iteration technique to determine the optimal value of the performance level γ. γ-iteration is a bisection algorithm that starts with high and low estimates of γ and iterates on γ values to approach the optimal H_{∞} control design.

At each value of γ, the algorithm tests a γ value to determine whether a solution exists. In the Riccatibased method, the algorithm computes the smallest performance level for which the stabilizing Riccati solutions $X=X_{\infty} / \gamma$ and $Y=Y_{\infty} / \gamma$ exist. For any γ greater than that performance level and in the range gamRange, the algorithm evaluates the central controller formulas (K formulas) and checks the closed-loop stability of $C L=l f t(P, K)$. This step is equivalent to verifying the conditions:

- $\min (e i g(X)) \geq 0$
- $\min (\operatorname{eig}(Y)) \geq 0$
- \quad rho $(X Y)<1$, where the spectral radius rho $(X Y)=\max (\operatorname{abs}(e i g(X Y)))$

A γ that meets these conditions passes. The stopping criterion for the bisection algorithm requires the relative difference between the last γ value that failed and the last γ value that passed be less than 0.01 . (You can change this criterion using hinfsynOptions.) hinfsyn returns the controller
corresponding to the smallest tested γ value that passes. For discrete-time controllers, the algorithm performs additional computations to construct the feedthrough matrix D_{K}.

Use the Display option of hinfsyn0ptions to make hinfsyn display values showing which of the conditions are satisfied for each γ value tested.

The algorithm works best when the following conditions are satisfied by the plant:

- D_{12} and D_{21} have full rank.
- $\left[\begin{array}{cc}A-j \omega I & B_{2} \\ C_{1} & D_{12}\end{array}\right]$ has full column rank for all $\omega \in R$.
- $\left[\begin{array}{cc}A-j \omega I & B_{1} \\ C_{2} & D_{21}\end{array}\right]$ has full row rank for all $\omega \in R$.

When these rank conditions do not hold, the controller may have undesirable properties. If D_{12} and D_{21} are not full rank, then the H_{∞} controller K might have large high-frequency gain. If either of the latter two rank conditions does not hold at some frequency ω, the controller might have very lightly damped poles near that frequency.

Compatibility Considerations

Name,Value options are not recommended

Not recommended starting in R2018b
As of R2018b, using Name, Value syntax to specify options for hinfsyn is not recommended. Instead, to set a target performance range, use the gamRange input argument. For other options, create an options set with hinfsynOptions.

The following table shows how to update your calls to hinfsyn to use the recommended ways of specifying options.

Not Recommended	Recommended
$\begin{aligned} & \hline \text { [K,CL,GAM] = } \\ & \text { hinfsyn(__, 'GMIN',gmin, 'GMAX',gmax) } \end{aligned}$	[K,CL, GAM] = hinfsyn(__, gamRange)
[K,CL,GAM] = hinfsyn(__, 'TOLGAM', tol)	$\begin{aligned} & \begin{array}{l} \text { opts = hinfsynOptions('RelTol', tol); } \\ {[K, C L, G A M]=\text { hinfsyn(__,opts); }} \end{array} \end{aligned}$
$\begin{aligned} & \text { [K,CL,GAM] = } \\ & \operatorname{hinfsyn(\ldots \quad ,'METHOD',~meth~}) \end{aligned}$	opts = hinfsynOptions('Method',meth); [K,CL,GAM] = hinfsyn(__,opts);
$\begin{aligned} & {[\mathrm{K}, \mathrm{CL}, \mathrm{GAM}]=} \\ & \operatorname{hinfsyn}\left(\ldots,{ }^{\prime}\right. \text {, DISPLAY','on') } \end{aligned}$	$\begin{aligned} & \text { opts = hinfsyn0ptions('Display','on'); } \\ & {[K, C L, G A M]=\text { hinfsyn(__,opts); }} \end{aligned}$

For more information, see hinfsyn0ptions.

info output argument changed

Behavior changed in R2018b
The fields of the optional output argument info changed in R2018b. Prior to that release, info was a structure with the following fields.

AS	All-solutions controller parameterization, scaled so that $\\|Q\\|_{\infty}<1$
KFI	Full information gain matrix (constant feedback)
	$u_{2}(t)=K_{F I}\left[\begin{array}{c}x(t) \\ u_{1}(t)\end{array}\right]$
KFC	Full control gain matrix (constant output-injection; $K_{F C}$ is the dual of $K_{F I}$)
GAMFI	H_{∞} cost for full information $K_{F I}$
GAMFC	H_{∞} cost for full control $K_{F C}$

info. AS is still available, but its scaling has changed. See "Scaling of info.AS" on page 1-230.
For the remaining fields, the following functions are recommended instead:

- info.KFI, info. GAMFI - Use hinffi for full-information synthesis.
- info.KFC, info. GAMFC - Use hinffc for full-control synthesis.

These fields are hidden in the info argument returned by hinfsyn. However, you can still access them using dot notation. For instance:

```
[K,CL,gamma,info] = hinfsyn(P,nmeas,ncont);
gfi = info.GAMFI;
gfc = info.GAMFC;
```


Scaling of info.AS

Prior to R2018b, the all-solutions controller parameterization info.AS was scaled so that the free stable contraction map Q was constrained by $\|Q\|_{\infty}<1$. In R2018b, the scaling of info. AS has changed, so that the constraint on Q is $\|Q\|_{\infty}<\gamma$, where γ is info.gamma. This new constraint ensures that the all-solutions controller $K_{A S}$ has a finite limit as gamTry $\rightarrow \infty$.

References

[1] Glover, K., and J.C. Doyle. "State-space formulae for all stabilizing controllers that satisfy an H_{∞} norm bound and relations to risk sensitivity." Systems \& Control Letters, Vol. 11, Number 8, 1988, pp. 167-172.
[2] Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis. "State-space solutions to standard H_{2} and H_{∞} control problems." IEEE Transactions on Automatic Control, Vol 34, Number 8, August 1989, pp. 831-847.
[3] Safonov, M.G., D.J.N. Limebeer, and R.Y. Chiang. "Simplifying the H_{∞} Theory via Loop Shifting, Matrix Pencil and Descriptor Concepts." Int. J. Contr., Vol. 50, Number 6, 1989, pp. 2467-2488.
[4] Packard, A., K. Zhou, P. Pandey, J. Leonhardson, and G. Balas. "Optimal, constant I/O similarity scaling for full-information and state-feedback problems." Systems \& Control Letters, Vol. 19, Number 4, 1992, pp. 271-280.
[5] Gahinet, P., and P. Apkarian. "A linear matrix inequality approach to H_{∞}-control." Int. J. Robust and Nonlinear Control, Vol. 4, Number. 4, 1994, pp. 421-448.
[6] Iwasaki, T., and R.E. Skelton. "All controllers for the general H_{∞}-control problem: LMI existence conditions and state space formulas." Automatica, Vol. 30, Number 8, 1994, pp. 1307-1317.

See Also

augw|h2syn | hinffc| hinffi|hinfsynOptions|loopsyn|mixsyn|ncfsyn

Topics

"Robust Control of an Active Suspension"
"Mixed-Sensitivity Loop Shaping"
"H-Infinity Performance"
Introduced before R2006a

hinfsynOptions

Option set for hinfsyn and mixsyn

Syntax

opts = hinfsynOptions
opts = hinfsynOptions(Name, Value)

Description

opts $=$ hinfsynOptions creates the default option set for the hinfsyn and mixsyncommands.
opts = hinfsynOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

Examples

Specify Algorithm and Display for H-Infinity Synthesis

Use the LMI-based algorithm to compute an H_{∞}-optimal controller for a plant with one control signal and two measurement signals. Turn on the display that shows the progress of the computation.

Load the plant, and specify the numbers of measurements and controls.

```
load hinfsynExData P
ncont = 1;
nmeas = 2;
```

Create an options set for hinfsyn that specifies the LMI-based algorithm and turns on the display.

```
opts = hinfsynOptions('Method','LMI','Display','on');
```

Alternatively, start with the default options set, and use dot notation to change option values.

```
opts = hinfsynOptions;
opts.Method = 'LMI';
opts.Display = 'on';
Compute the controller.
```

```
[K,CL,gamma] = hinfsyn(P,nmeas,ncont,opts);
```

[K,CL,gamma] = hinfsyn(P,nmeas,ncont,opts);
Minimization of gamma:
Minimization of gamma:
Solver for linear objective minimization under LMI constraints
Solver for linear objective minimization under LMI constraints
Iterations : Best objective value so far
Iterations : Best objective value so far
1
1
2 223.728733
2 223.728733
3 138.078240

```
    3 138.078240
```

```
        138.078240
    74.644885
    48.270221
    48.270221
    48.270221
    19.665676
        19.665676
        11.607238
        11.607238
        11.607238
        4.067958
        4.067958
        4.067958
        2.154349
        2.154349
        2.154349
        1.579564
        1.579564
        1.579564
        1.236727
        1.236727
        1.236727
        0.993344
        0.993344
        0.949319
        0.949319
        0.949319
        0.945762
        0.944063
        0.941246
        0.941246
        0.940604
        new lower bound: 0.931668
Result: feasible solution of required accuracy
    best objective value: 0.940604
    guaranteed absolute accuracy: 8.94e-03
    f-radius saturation: 0.405% of R = 1.00e+08
Optimal Hinf performance: 9.397e-01
```


Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Valuel, ... , NameN, ValueN.
Example: 'Display','on', 'RelTol', 0.05

General Options

Display - Display progress and generate report

'off' (default)|'on'

Display optimization progress and generate report in the command window, specified as the commaseparated pair consisting of 'Display' and 'on' or 'off'. The contents of the display depend on the value of the 'Method ' option.

For 'Method ' = 'RIC' , the display shows the range of performance targets (gamma values) tested. For each gamma, the display shows:

- The smallest eigenvalues of the normalized Riccati solutions $X=X_{\infty} / \gamma$ and $Y=Y_{\infty} / \gamma$
- The spectral radius rho $(X Y)=\max (\operatorname{abs}(\operatorname{eig}(X Y)))$
- A pass/fail (p / f) flag indicating whether that gamma value satisfies the conditions $X \geq 0, Y \geq 0$, and rho $(X Y)<1$
- The best achieved gamma performance value

For more information about the displayed information, see the Algorithms section of hinfsyn.
For 'Method' = 'LMI', the display shows the best achieved gamma value for each iteration of the optimization problem. It also displays a report of the best achieved value and other parameters of the computation.

Example: opts $=$ hinfsyn0ptions('Display','on') creates an option set that turns the progress display on.

Method - Optimization algorithm

'RIC' (default) | 'LMI'
Optimization algorithm that hinfsyn or mixsyn uses to optimize closed-loop performance, specified as the comma-separated pair consisting of 'Method' and one of the following:

- 'RIC' - Riccati-based algorithm. The Riccati method is fastest, but cannot handle singular problems without first adding extra disturbances and errors. This process is called regularization, and is performed automatically by hinfsyn and mixsyn unless you set the 'Regularize' option to 'off'. With regularization, this method works well for most problems.

When 'Method' = 'RIC', the additional options listed under "Riccati Method Options" on page 1-0 are available.

- 'LMI' - LMI-based algorithm. This method requires no regularization, but is computationally more intensive than the Riccati method.

When 'Method' = 'LMI', the additional options listed under "LMI Method Options" on page 10 are available.

- 'MAXE' - Maximum-entropy algorithm.

When 'Method' = 'MAXE', the additional options listed under "Maximum-Entropy Method Options" on page 1-0 are available.

For more information about how these algorithms work, see the Algorithms section of hinfsyn.
Example: opts $=$ hinfsyn0ptions('Mathod', 'LMI') creates an option set that specifies the LMI-based optimization algorithm.

RelTol - Relative accuracy on optimal \boldsymbol{H}_{∞} performance

0.01 (default) | positive scalar

Relative accuracy on the optimal H_{∞} performance, specified as the comma-separated pair consisting of 'RelTol' and a positive scalar value. The algorithm stops testing γ values when the relative difference between the last failing value and last passing value is less than RelTol.
Example: opts $=$ hinfsyn0ptions('RelTol', 0.05) creates an option set that sets the relative accuracy to 0.05 .

Riccati Method Options

AbsTol - Absolute accuracy on optimal \boldsymbol{H}_{∞} performance

10^{-6} (default) | positive scalar
Absolute accuracy on the optimal H_{∞} performance, specified as the comma-separated pair consisting of 'AbsTol' and a positive scalar value.
Example: opts $=$ hinfsyn0ptions('AbsTol', le-4) creates an option set that sets the absolute accuracy to 0.0001 .

AutoScale - Automatic plant scaling

'on' (default)|'off'
Automatic plant scaling, specified as the comma-separated pair consisting of 'AutoScale' and one of the following:

- 'on ' - Automatically scales the plant states, controls, and measurements to improve numerical accuracy. hinfsyn always returns the controller K in the original unscaled coordinates.
- 'off' - Does not change the plant scaling. Turning off scaling when you know your plant is well scaled can speed up the computation.

Example: opts = hinfsynOptions('AutoScale','off') creates an option set that turns off automatic scaling.

Regularize - Automatic regularization

'on' (default)|'off'
Automatic regularization of the plant, specified as the comma-separated pair consisting of 'Regularize' and one of:

- 'on' - Automatically regularizes the plant to enforce requirements on P_{12} and P_{21} (see hinfsyn). Regularization is a process of adding extra disturbances and errors to handle singular problems.
- 'off' - Does not regularize the plant. Turning off regularization can speed up the computation when you know your problem is far enough from singular.

Example: opts = hinfsyn0ptions('Regularize','off') creates an option set that turns off regularization.

LimitGain - Limit on controller gains

'on' (default)|'off'
Limit on controller gains, specified as the comma-separated pair consisting of 'LimitGain' and either 'on' or 'off'. For continuous-time plants, regularization of plant feedthrough matrices D_{12} or D_{21} (see hinfsyn) can result in controllers with large coefficients and fast dynamics. Use this option to automatically seek a controller with the same performance but lower gains and better conditioning.

LMI Method Options

LimitRS - Limit on norm of LMI solutions

0 (default) | scalar in [0,1]
Limit on norm of LMI solutions, specified as the comma-separated pair consisting of 'LimitRS ' and a scalar factor in the range [0,1]. Increase this value to slow the controller dynamics by penalizing large-norm LMI solutions. See [1].

TolRS - Reduced-order synthesis tolerance

0.001 (default) | positive scalar

Reduced-order synthesis tolerance, specified as the comma-separated pair consisting of 'TolRS ' and a positive scalar value. hinfsyn computes a reduced-order controller when $1<=r h o(R * S)<=$ TolRs, where rho (A) is the spectral radius, $\max (\operatorname{abs}(\operatorname{eig}(A)))$.

Maximum-Entropy Method Options

S0 - Frequency at which to evaluate entropy
 Inf (default) | real scalar

Frequency at which to evaluate entropy, specified as a real scalar value. For more information, see the Algorithms section of hinfsyn.

Output Arguments

opts - Options for hinfsyn and mixsyn
 hinfsyn options object

Options for the hinfsyn or mixsyn computation, returned as an hinfsyn options object. Use the object as an input argument to hinfsyn or mixsyn. For example:
[K, CL, gamma, info] = hinfsyn(P, nmeas, ncont,opts);

References

[1] Gahinet, P., and P. Apkarian. "A linear matrix inequality approach to H_{∞}-control." Int J. Robust and Nonlinear Control, Vol. 4, No. 4, 1994, pp. 421-448.

See Also

hinfsyn | mixsyn
Introduced in R2018b

icomplexify

Helper function for complexify

Syntax

DeltaR = icomplexify(DeltaCR)

Description

icomplexify works on structures to extract a real value from a pair of related fields.
DeltaR = icomplexify (DeltaCR) affects field pairs of DeltaCR named 'foo' and
' foo_cmpxfy' where ' foo' can be any field name. DeltaR is the same as DeltaCR except that the fields ' foo cmpxfy ' are removed. complexify, by default, complexifies the real uncertainty with ucomplex atoms, though optionally ultidyn atoms can be used. If a ucomplex uncertainty was used to complexify the uncertain system, the real parts of 'foo_cmpxfy ' are added to the real parts of ' foo'. If a ultidyn uncertainty was used to complexify the uncertain system, only the real parts of 'foo' are returned.

See Also

complexify|robstab
Introduced in R2007a

iconnect

Create empty iconnect (interconnection) objects

Syntax

H = iconnect

Description

Interconnection objects (class iconnect) are an alternative to sysic, and are used to build complex interconnections of uncertain matrices and systems.

An iconnect object has 3 fields to be set by the user, Input, Output and Equation. Input and Output are icsignal objects, while Equation.is a cell-array of equality constraints (using equate) on icsignal objects. Once these are specified, then the System property is the input/output model, implied by the constraints in Equation. relating the variables defined in Input and Output.

Examples

iconnect can be used to create the transfer matrix M as described in the following figure.

Create three scalar icsignal: r, e and y. Create an empty iconnect object, M. Define the output of the interconnection to be [e; y], and the input to be r. Define two constraints among the variables: $e=r-y$, and $y=(2 / s)$ e. Get the transfer function representation of the relationship between the input (r) and the output $[e ; y]$.

```
r = icsignal(1);
e = icsignal(1);
y = icsignal(1);
M = iconnect;
M.Input = r;
M.Output = [e;y];
M.Equation{1} = equate(e,r-y);
M.Equation{2} = equate(y,tf(2,[1 0])*e);
tf(M.System)
```

The transfer functions from input to outputs are

```
    S
#1: -----
    s + 2
            2
#2: -----
    s + 2
```

By not explicitly introducing e, this can be done more concisely with only one equality constraint.

```
\(r=i c s i g n a l(1) ;\)
y = icsignal(1);
\(\mathrm{N}=\) iconnect;
N. Input = r;
N.Output = [r-y;y];
N.Equation\{1\} = equate(y,tf(2,[10])*(r-y));
tf(N.System)
```

You have created the same transfer functions from input to outputs.

```
#1: -----
    s + 2
            2
#2: -----
        s + 2
```

You can also specify uncertain, multivariable interconnections using iconnect. Consider two uncertain motor/generator constraints among 4 variables [V; I;T;W], V-R*I-K*W=0, and T=K*I. Find the uncertain 2×2 matrix B so that $[V ; T]=B^{*}[W ; I]$.

```
R = ureal('R',1,'Percentage',[-10 40]);
K = ureal('K',2e-3,'Percentage',[-30 30]);
V = icsignal(1);
I = icsignal(1);
T = icsignal(1);
W = icsignal(1);
M = iconnect;
M.Input = [W;I];
M.Output = [V;T];
M.Equation{1} = equate(V-R*I-K*W,iczero(1));
M.Equation{2} = equate(T,K*I);
B = M.System
UMAT: 2 Rows, 2 Columns
    K: real, nominal = 0.002, variability = [-30 30]%, 2 occurrences
    R: real, nominal = 1, variability = [-10 40]%, 1 occurrence
B.NominalValue
ans =
```


A simple system interconnection, identical to the system illustrated in the sysic reference pages. Consider a three-input, two-output state-space matrix T,

which has internal structure


```
\(P=r s s(3,2,2)\);
\(K=\operatorname{rss}(1,1,2)\);
A \(=\operatorname{rss}(1,1,1)\);
\(W=\operatorname{rss}(1,1,1)\);
M = iconnect;
noise \(=\) icsignal(1);
deltemp = icsignal(1);
setpoint = icsignal(1);
yp = icsignal(2);
rad2deg \(=57.3\)
rad2deg =
57.3000
M.Equation \(\{1\}=\) equate(yp, \(\mathrm{P}^{*}\left[\mathrm{~W}^{*}\right.\) deltemp; \(\mathrm{A}^{*} \mathrm{~K}^{*}[\) noise+yp(2); setpoint] \(]\) );
M.Input = [noise;deltemp;setpoint];
M.Output = [rad2deg*yp(1); setpoint-yp(2)];
T = M.System;
size(T)
State-space model with 2 outputs, 3 inputs, and 6 states.
```


Limitations

The syntax for iconnect objects and icsignals is very flexible. Without care, you can build inefficient (i.e., nonminimal) representations where the state dimension of the interconnection is greater than the sum of the state dimensions of the components. This is in contrast to sysic. In sysic, the syntax used to specify inputs to systems (the input to ListedSubSystemName variable) forces you to include each subsystem of the interconnection only once in the equations. Hence, interconnections formed with sysic are componentwise minimal. That is, the state dimension of the interconnection equals the sum of the state dimensions of the components.

Algorithms

Each equation represents an equality constraint among the variables. You choose the input and output variables, and the imp2exp function makes the implicit relationship between them explicit.

See Also

icsignal|sysic
Introduced before R2006a

icsignal

Create icsignal object of specified dimension

Syntax

v = icsignal(n);
$\mathrm{v}=$ icsignal(n, name)

Description

icsignal creates an icsignal object, which is a symbolic column vector. The icsignal object is used with iconnect objects to specify signal constraints described by the interconnection of components.
$v=$ icsignal(n) creates an icsignal object of vector length n. The value of n must be a nonnegative integer. icsignal objects are symbolic column vectors, used in conjunction with iconnect (interconnection) objects to specify the signal constraints described by an interconnection of components.
$\mathrm{v}=$ icsignal(n , name) creates an icsignal object of dimension n , with internal name identifier given by the character vector name.

See Also

iconnect|sysic
Introduced before R2006a

imp2ss

System realization via Hankel singular value decomposition

Syntax

```
[a,b,c,d,totbnd,hsv] = imp2ss(y)
[a,b,c,d,totbnd,hsv] = imp2ss(y,ts,nu,ny,tol)
[ss,totbnd,hsv] = imp2ss(imp)
[ss,totbnd,hsv] = imp2ss(imp,tol)
```


Description

The function imp2ss produces an approximate state-space realization of a given impulse response

```
imp=mksys(y,t,nu,ny,'imp');
```

using the Hankel SVD method proposed by S. Kung [2]. A continuous-time realization is computed via the inverse Tustin transform (using bilin) if t is positive; otherwise a discrete-time realization is returned. In the SISO case the variable y is the impulse response vector; in the MIMO case y is an N +1 -column matrix containing $N+1$ time samples of the matrix-valued impulse response H_{0}, \ldots, H_{N} of an nu-input, ny-output system stored row-wise:

$$
\begin{array}{cccccc}
y & = & {\left[H_{0}(:)^{\prime} ; H_{2}(:)^{\prime} ;\right.} & H_{3}(:)^{\prime} ; & \ldots & H_{N}(:)^{\prime}
\end{array}
$$

The variable tol bounds the H_{∞} norm of the error between the approximate realization (a, b, c, d) and an exact realization of y; the order, say n, of the realization (a, b, c, d) is determined by the infinity norm error bound specified by the input variable tol. The inputs $\mathrm{ts}, \mathrm{nu}, \mathrm{ny}$, and tol are optional. If omitted, they default to the values ts $=0, \mathrm{nu}=1, \mathrm{ny}=($ number of rows of $y) / \mathrm{nu}, \mathrm{tol}=0.01 \bar{\sigma}_{1}$. The output $h s v=\left[\bar{\sigma}_{1}, \bar{\sigma}_{2}, \ldots\right]^{\prime}$ returns the singular values (arranged in descending order of magnitude) of the Hankel matrix:

$$
\Gamma=\left[\begin{array}{ccccc}
H_{1} & H_{2} & H_{3} & \ldots & H_{N} \\
H_{2} & H_{3} & H_{4} & \ldots & 0 \\
H_{3} & H_{4} & H_{5} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
H_{N} & 0 & \ldots & \ldots & 0 s
\end{array}\right]
$$

Denoting by G_{N} a high-order exact realization of y, the low-order approximate model G enjoys the H_{∞} norm bound

$$
\left\|G-G_{N}\right\|_{\infty} \leq t o t b n d
$$

where

$$
\text { totbnd }=2 \sum_{i=n+1}^{N} \bar{\sigma}_{i} .
$$

Algorithms

The realization (a, b, c, d) is computed using the Hankel SVD procedure proposed by Kung [2] as a method for approximately implementing the classical Hankel factorization realization algorithm. Kung's SVD realization procedure was subsequently shown to be equivalent to doing balanced truncation (balmr) on an exact state-space realization of the finite impulse response $\{y(1), \ldots . y(N)\}$ [3]. The infinity norm error bound for discrete balanced truncation was later derived by Al-Saggaf and Franklin [1]. The algorithm is as follows:

1 Form the Hankel matrix Γ from the data y.
2 Perform SVD on the Hankel matrix

$$
\Gamma=U \sum V^{*}=\left[U_{1} U_{2}\right]\left[\begin{array}{cc}
\sum_{1} & 0 \\
0 & \sum_{2}
\end{array}\right]\left[\begin{array}{c}
V^{*} \\
V^{*}
\end{array}\right]=U_{1} \sum_{1} V^{*}
$$

where Σ_{1} has dimension $n \times n$ and the entries of Σ_{2} are nearly zero. U_{1} and V_{1} have $n y$ and $n u$ columns, respectively.
3 Partition the matrices U_{1} and V_{1} into three matrix blocks:

$$
U 1=\left[\begin{array}{l}
U_{11} \\
U_{12} \\
U_{13}
\end{array}\right]\left[\begin{array}{l}
V_{11} \\
V_{12} \\
V_{13}
\end{array}\right]
$$

where $U_{11}, U_{13} \in C^{n y \times n}$ and $V_{11}, V_{13} \in C^{n u \times n}$.
4 A discrete state-space realization is computed as
$A=\sum_{1}^{-\frac{1}{2}} \bar{U} \sum_{1}^{-\frac{1}{2}}$
$B=\sum_{1}^{-\frac{1}{2}} V^{*_{11}}$
$C=U_{11} \sum_{1}^{-\frac{1}{2}}$
$D=H_{0}$
where

$$
\bar{U}=\left[\begin{array}{l}
U_{11} \\
U_{12}
\end{array}\right],\left[\begin{array}{l}
U_{12} \\
U_{13}
\end{array}\right]
$$

5 If the sample time t is greater than zero, then the realization is converted to continuous time via the inverse of the Tustin transform
$s=\frac{2}{t} \frac{z-1}{z+1}$.
Otherwise, this step is omitted and the discrete-time realization calculated in Step 4 is returned.

References

[1] Al-Saggaf, U.M., and G.F. Franklin, "An Error Bound for a Discrete Reduced Order Model of a Linear Multivariable System," IEEE Trans. on Autom. Contr., AC-32, 1987, p. 815-819.
[2] Kung, S.Y., "A New Identification and Model Reduction Algorithm via Singular Value Decompositions," Proc. Twelfth Asilomar Conf. on Circuits, Systems and Computers, November 6-8, 1978, p. 705-714.
[3] Silverman, L.M., and M. Bettayeb, "Optimal Approximation of Linear Systems," Proc. American Control Conf., San Francisco, CA, 1980.

Introduced before R2006a

ispsys

True for parameter-dependent systems

Syntax

bool = ispsys(sys)

Description

bool = ispsys(sys) returns 1 if sys is a polytopic or parameter-dependent system.

See Also

psinfo|psys
Introduced before R2006a

isuncertain

Check whether argument is uncertain class type

Syntax

$B=$ isuncertain(A)

Description

Returns true if input argument is uncertain, false otherwise. Uncertain classes are umat, ufrd, uss, ureal, ultidyn, umargin, ucomplex, ucomplexm, and udyn.

Examples

In this example, you verify the correct operation of isuncertain on double, ureal, ss, and uss objects.

```
isuncertain(rand(3,4))
ans =
    0
isuncertain(ureal('p',4))
ans =
    1
isuncertain(rss(4,3,2))
ans =
    0
isuncertain(rss(4,3,2)*[ureal('p1',4) 6;0 1])
ans =
    1
```


Limitations

isuncertain only checks the class of the input argument, and does not actually verify that the input argument is truly uncertain. Create a umat by lifting a constant (i.e., not-uncertain) matrix to the umat class.

```
A = umat([2 3;4 5;6 7]);
```

Note that although A is in class umat, it is not actually uncertain. Nevertheless, based on class, the result of isuncertain(A) is true.

```
isuncertain(A)
ans =
    1
```

The result of simplify (A) is a double, and hence not uncertain.

```
isuncertain(simplify(A))
ans =
    0
```

Introduced before R2006a

Iftdata

Decompose uncertain objects into fixed certain and normalized uncertain parts

Syntax

```
[M,Delta] = lftdata(A);
[M,Delta] = lftdata(A,List);
[M,Delta,Blkstruct] = lftdata(A);
[M,Delta,Blkstruct,Normunc] = lftdata(A);
```


Description

lftdata decomposes an uncertain object into a fixed certain part and a normalized uncertain part. lftdata can also partially decompose an uncertain object into an uncertain part and a normalized uncertain part. Uncertain objects (umat, ufrd, uss) are represented as certain (i.e., not-uncertain) objects in feedback with block-diagonal concatenations of uncertain elements.
[M,Delta] = lftdata (A) separates the uncertain object A into a certain object M and a normalized uncertain matrix Delta such that A is equal to lft ($\mathrm{Delta}, \mathrm{M}$), as shown below.

If A is a umat, then M will be double; if A is a uss, then M will be ss; if A is a ufrd, then M will be frd. In all cases, Delta is a umat.
[M,Delta] = lftdata(A,List) separates the uncertain object A into an uncertain object M, in feedback with a normalized uncertain matrix Delta. List is a cell (or char) array of names of uncertain elements of A that make up Delta. All other uncertainty in A remains in M.
lftdata(A,fieldnames(A.Uncertainty)) is the same as lftdata(A).
[M,DELTA,BLKSTRUCT] = lftdata(A) returns an N-by-1 structure array BLKSTRUCT, where BLKSTRUCT(i) describes the i-th normalized uncertain element. This uncertainty description can be passed directly to the low-level structured singular value analysis function mussv.
[M,DELTA, BLKSTRUCT, NORMUNC] = lftdata(A) returns the cell array NORMUNC of normalized uncertain elements. Each normalized element has 'Normalized ' appended to its original name to avoid confusion. Note that lft (blkdiag (NORMUNC \{: \}) , M) is equivalent to A. The normalizations for each type of uncertain element are described in "Decomposing Uncertain Objects".

Examples

Decompose Uncertain Matrix

Create an uncertain matrix A with uncertain parameters p1, and p2. Decompose A into its certain part, M , and normalized uncertain part, Delta.

```
p1 = ureal('p1',-3,'perc',40);
p2 = ucomplex('p2',2);
A = [p1 p1+p2;1 p2];
[M,Delta] = lftdata(A);
```

You can inspect the difference between the original uncertain matrix, A, and the result formed by combining the two results from the decomposition.

```
simplify(A-lft(Delta,M))
ans = 2\times2
    0}
    0 0
M
M = 4×4
\begin{tabular}{rrrr}
0 & 0 & 1.0954 & 1.0954 \\
0 & 0 & 0 & 1.0000 \\
1.0954 & 1.0000 & -3.0000 & -1.0000 \\
0 & 1.0000 & 1.0000 & 2.0000
\end{tabular}
```

You can check the worst-case norm of the uncertain part using wcnorm. Compare samples of the uncertain part A with the uncertain matrix A.

```
wcn = wcnorm(Delta)
wcn = struct with fields:
    LowerBound: 0
    UpperBound: 1.0012
usample(Delta,3)
ans =
ans(:,:,1) =
    0.6294 + 0.0000i 0.0000 + 0.0000i
    0.0000 + 0.0000i 0.8776 - 0.4413i
ans(:,:,2) =
    0.8116 + 0.0000i 0.0000 + 0.0000i
    0.0000 + 0.0000i 0.2704 + 0.2907i
ans(:,:,3) =
    -0.7460 + 0.0000i 0.0000 + 0.0000i
```


Decompose Uncertain System

Create an uncertain matrix A with 2 uncertain real parameters v1 and v2. The create an uncertain system G using A as the dynamic matrix, and numeric matrices for the input and output.
$A=[u r e a l(' p 1 ',-3, ' p e r c ', 40) 1 ; 1$ ureal('p2',-2)];
sys = ss(A,[1;0],[0 1],0);
sys.InputGroup.ActualIn = 1;
sys.OutputGroup.Actual0ut = 1;
You can decompose G into a certain system, Msys, and a normalized uncertain matrix, Delta. You can see from Msys that it is certain, and that the input and output groups have been adjusted.

```
[Msys,Delta] = lftdata(sys);
Msys
Msys =
    A =
            M}\begin{array}{rrr}{\times1}&{x2}\\{\times1}&{-3}&{1}
    x2 1 -2
    B =
\begin{tabular}{rrrr} 
& ul & u2 & u3 \\
\(\times 1\) & 1.095 & 0 & 1 \\
\(\times 2\) & 0 & 1 & 0
\end{tabular}
    C =
        x1 x2
        y1 1.095 0
        y2 0 1
        y3 0 1
    D =
        lrrr
        y2 0 0 0
        y3 0 0 0
Input groups:
        Name
    ActualIn
        Channels
    3
Output groups:
        Name Channels
    ActualOut 3
```

Continuous-time state-space model.

You can compute the norm on samples of the difference between the original uncertain matrix and the result formed by combining Msys and Delta.

```
norm(usample(sys-lft(Delta,Msys),'p1',4,'p2',3),'inf')
ans = 4×3
```

0	0	0
0	0	0
0	0	0
0	0	0

Partial Decomposition

Create an uncertain matrix A and derive an uncertain matrix B using an implicit-to-explicit conversion, imp2exp. Note that B has 2 uncertain parameters R and K. You can decompose B into certain part, M , and normalized uncertain part, Delta.

```
R = ureal('R',1,'Percentage',[-10 40]);
K = ureal('K',2e-3,'Percentage',[-30 30]);
A = [1 -R 0 -K;0 -K 1 0];
Yidx = [1 3];
Uidx = [4 2];
B = imp2exp(A,Yidx,Uidx);
[M,Delta] = lftdata(B);
```

The same operation can be performed by defining the uncertain parameters, K and R, to be extracted.

```
[MK,DeltaR] = lftdata(B,'R');
MK
MK =
    Uncertain matrix with 3 rows and 3 columns.
    The uncertainty consists of the following blocks:
        K: Uncertain real, nominal = 0.002, variability = [-30,30]%, 2 occurrences
Type "MK.NominalValue" to see the nominal value, "get(MK)" to see all properties, and "MK.Uncerta
[MR,DeltaK] = lftdata(B,'K');
MR
MR =
    Uncertain matrix with 4 rows and 4 columns.
    The uncertainty consists of the following blocks:
        R: Uncertain real, nominal = 1, variability = [-10,40]%, 1 occurrences
Type "MR.NominalValue" to see the nominal value, "get(MR)" to see all properties, and "MR.Uncert
simplify(B-lft(Delta,M))
ans = 2\times2
    0}
    0 0
simplify(B-lft(DeltaR,MK))
```

```
ans = 2\times2
    0}
    0}
simplify(B-lft(DeltaK,MR))
ans = 2\times2
    0}
    0
```

Examine the result formed by combining the two results from the decomposition.
[Mall, Deltaall] = lftdata(B,\{'K';'R'\}); Mall-M
ans $=5 \times 5$

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

See Also

lft|ssdata

Topics

"Decomposing Uncertain Objects"

Introduced before R2006a

Imiedit

Specify or display systems of LMIs as MATLAB expressions

Syntax

lmiedit

Description

lmiedit is a graphical user interface for the symbolic specification of LMI problems. Typing lmiedit calls up a window with two editable text areas and various buttons. To specify an LMI system,

1 Give it a name (top of the window).
2 Declare each matrix variable (name and structure) in the upper half of the window. The structure is characterized by its type (S for symmetric block diagonal, R for unstructured, and G for other structures) and by an additional structure matrix similar to the second input argument of lmivar. Please use one line per matrix variable in the text editing areas.

3 Specify the LMIs as MATLAB expressions in the lower half of the window. An LMI can stretch over several lines. However, do not specify more than one LMI per line.

Once the LMI system is fully specified, you can perform the following operations by pressing the corresponding button:

- Visualize the sequence of lmivar/lmiterm commands needed to describe this LMI system (view commands buttons)
- Conversely, display the symbolic expression of the LMI system produced by a particular sequence of lmivar/lmiterm commands (click the describe... buttons)
- Save the symbolic description of the LMI system (save button). This description can be reloaded later on by pressing the load button
- Read a sequence of lmivar/lmiterm commands from a file (read button). The matrix expression of the LMI system specified by these commands is then displayed by clicking on describe the LMIs...
- Write in a file the sequence of lmivar/lmiterm commands needed to specify a particular LMI system (write button)
- Generate the internal representation of the LMI system by pressing create. The result is written in a MATLAB variable with the same name as the LMI system

Tips

Editable text areas have built-in scrolling capabilities. To activate the scroll mode, click in the text area, maintain the mouse button down, and move the mouse up or down. The scroll mode is only active when all visible lines have been used.

See Also

lmiinfo| lmiterm| lmivar|newlmi

Introduced before R2006a

Imiinfo

Information about variables and term content of LMIs

Syntax

lmiinfo

Description

lmiinfo provides qualitative information about the system of LMIs lmisys. This includes the type and structure of the matrix variables, the number of diagonal blocks in the inner factors, and the term content of each block.
lmiinfo is an interactive facility where the user seeks specific pieces of information. General LMIs are displayed as
$\mathrm{N}^{\prime} * \mathrm{~L}(\mathrm{x}) * \mathrm{~N}<\mathrm{M}^{\prime} * \mathrm{R}(\mathrm{x}) * \mathrm{M}$
where N, M denote the outer factors and L, R the left and right inner factors. If the outer factors are missing, the LMI is simply written as
$L(x)<R(x)$
If its right side is zero, it is displayed as

```
N'*L(x)*N<0
```

Information on the block structure and term content of $L(x)$ and $R(x)$ is also available. The term content of a block is symbolically displayed as
$\mathrm{C} 1+\mathrm{A} 1 * \mathrm{X} 2 * \mathrm{~B} 1+\mathrm{B} 1{ }^{\prime} * \mathrm{X} 2 * \mathrm{~A} 1{ }^{\prime}+\mathrm{a} 2 * \mathrm{X} 1+\mathrm{x} 3 * \mathrm{Q} 1$
with the following conventions:

- X1, X2, x3 denote the problem variables. Upper-case X indicates matrix variables while lowercase x indicates scalar variables. The labels $1,2,3$ refer to the first, second, and third matrix variable in the order of declaration.
- Cj refers to constant terms. Special cases are I and -I (I = identity matrix).
- Aj, Bj denote the left and right coefficients of variable terms. Lower-case letters such as a2 indicate a scalar coefficient.
- Qj is used exclusively with scalar variables as in $\times 3 * Q 1$.

The index j in $A j, B j, C j, ~ Q j$ is a dummy label. Hence C1 may appear in several blocks or several LMIs without implying any connection between the corresponding constant terms. Exceptions to this rule are the notations A1*X2*A1' and A1*X2*B1 + B1'*X2'*A1' which indicate symmetric terms and symmetric pairs in diagonal blocks.

Examples

Consider the LMI

$$
0\left(\begin{array}{ccc}
-2 X+A^{T} Y B+B^{T} Y^{T} A+I & X C \\
C^{T} X & -z I
\end{array}\right)
$$

where the matrix variables are X of Type 1, Y of Type 2, and z scalar. If this LMI is described in lmis, information about X and the LMI block structure can be obtained as follows:

```
lmiinfo(lmis)
```

LMI ORACLE

This is a system of 1 LMI with 3 variable matrices
Do you want information on
(v) matrix variables
(l) LMIs
(q) quit
?> V
Which variable matrix (enter its index k between 1 and 3) ? 1
X 1 is a 2×2 symmetric block diagonal matrix
its (1,1)-block is a full block of size 2

This is a system of 1 LMI with 3 variable matrices Do you want information on
(v) matrix variables
(l) LMIs
(q) quit
?> l
Which LMI (enter its number k between 1 and 1) ? 1
This LMI is of the form
$0<R(x)$
where the inner factor(s) has 2 diagonal block(s)

Do you want info on the right inner factor ?
(w) whole factor
(b) only one block
(o) other LMI
(t) back to top level
?> W
Info about the right inner factor
block (1,1) : I + a1*X1 + A2*X2*B2 + B2'*X2'*A2'
block $(2,1)$: A3*X1
block (2,2) : x3*A4
(w) whole factor
(b) only one block
(o) other LMI
(t) back to top level

This is a system of 1 LMI with 3 variable matrices
Do you want information on
(v) matrix variables
(l) LMIs
(q) quit
?> q
It has been a pleasure serving you!
Note that the prompt symbol is ?> and that answers are either indices or letters. All blocks can be displayed at once with option (w), or you can prompt for specific blocks with option (b).

Tips

lmiinfo does not provide access to the numerical value of LMI coefficients.

See Also

decinfo| decnbr|lminbr|matnbr
Introduced before R2006a

Iminbr

Return number of LMIs in LMI system

Syntax

$\mathrm{k}=$ lminbr(lmisys)

Description

lminbr returns the number k of linear matrix inequalities in the LMI problem described in lmisys.

See Also

lmiinfo|matnbr
Introduced before R2006a

Imireg

Specify LMI regions for pole placement

Syntax

```
region = lmireg
region = lmireg(reg1,reg2,...)
```


Description

lmireg is an interactive facility to specify the LMI regions involved in multi-objective H_{∞} synthesis with pole placement constraints (see msfsyn and h2hinfsyn). An LMI region is any convex subset D of the complex plane that can be characterized by an LMI in z and z^{-}, i.e.,

$$
D=\left\{z \in C: L+M z+M^{T} \bar{z}<0\right\}
$$

for some fixed real matrices M and $L=L^{T}$. This class of regions encompasses half planes, strips, conic sectors, disks, ellipses, and any intersection of the above.

Calling lmireg without argument starts an interactive query/answer session where you can specify the region of your choice. The matrix region $=[L, M]$ is returned upon termination. This matrix description of the LMI region can be passed directly to msfsyn for synthesis purposes.

The function lmireg can also be used to intersect previously defined LMI regions reg1, reg $2, \ldots$. The output region is then the $[L, M]$ description of the intersection of these regions.

Examples

Define LMI Region for Pole Placement

For LMI controller synthesis with functions like msfsyn and h2hinfsyn, you can restrict the eigenvalues of the closed-loop system to an LMI region. The region is specified as a matrix of the form [L M]. In this example, use lmireg interactively to generate a matrix you can use to restrict the poles of the closed-loop system to $\operatorname{Re}(z)<-1$.

Start the interactive process.

```
region = lmireg
Select a region among the following:
h) Half-plane
d) Disk
c) Conic sector
e) Ellipsoid
p) Parabola
s) Horizontal strip
m) Matrix description of the LMI region
```

```
q) Quit
```

choice:

The software prompts you to select the geometry of the region. For this example, enter h to specify a half-plane region. The software now prompts you to specify left half-plane ($\operatorname{Re}(z)$ less than some value) or right half-plane ($\operatorname{Re}(z)$ greater than some value).

Orientation ($\mathrm{x}<\mathrm{x} 0$-> l , $\mathrm{x}>\mathrm{x} 0$-> r):
Enter l to specify a left half-plane. The software prompts you to specify a value for x 0 .
Specify x0:
Enter -1 . You have now completely specified the restriction $\operatorname{Re}(z)<-1$. If you want to specify additional regional constraints on the pole locations, you can select another geometry now and follow the prompts. For this example, enter q to generate the LMI region matrix corresponding to $\operatorname{Re}(z)<-$ 1.
region $=$

$$
2.0000+1.0000 i \quad 1.0000+0.0000 i
$$

You can now use region with msfsyn or h2hinfsyn.

See Also

h2hinfsyn |msfsyn
Introduced before R2006a

Imiterm

Specify term content of LMIs

Syntax

lmiterm(termID, $\mathrm{A}, \mathrm{B}, \mathrm{flag})$

Description

lmiterm specifies the term content of an LMI one term at a time. Recall that LMI term refers to the elementary additive terms involved in the block-matrix expression of the LMI. Before using lmiterm, the LMI description must be initialized with setlmis and the matrix variables must be declared with lmivar. Each lmiterm command adds one extra term to the LMI system currently described.

LMI terms are one of the following entities:

- outer factors
- constant terms (fixed matrices)
- variable terms $A X B$ or $A X^{\top} B$ where X is a matrix variable and A and B are given matrices called the term coefficients.

When describing an LMI with several blocks, remember to specify only the terms in the blocks on or below the diagonal (or equivalently, only the terms in blocks on or above the diagonal). For instance, specify the blocks $(1,1),(2,1)$, and $(2,2)$ in a two-block LMI.

In the calling of lmiterm, termID is a four-entry vector of integers specifying the term location and the matrix variable involved.

$$
\operatorname{termID}(1)=\left\{\begin{array}{l}
+\mathrm{p} \\
-\mathrm{p}
\end{array}\right.
$$

where positive p is for terms on the left-side of the p-th LMI and negative p is for terms on the rightside of the p-th LMI.

Recall that, by convention, the left side always refers to the smaller side of the LMI. The index p is relative to the order of declaration and corresponds to the identifier returned by newlmi.

$$
\text { termID }(2: 3)=\left\{\begin{array}{l}
{[0,0] \text { for outer factors }} \\
{[i, j] \text { for terms in the }(i, j) \text {-th block of the left or right inner factor }}
\end{array}\right.
$$

$$
\operatorname{termID}(4)=\left\{\begin{array}{l}
0 \text { for outer factors } \\
x \text { for variable terms } A X B \\
-x \text { for variable terms } A X^{T} B
\end{array}\right.
$$

where x is the identifier of the matrix variable X as returned by lmivar.
The arguments A and B contain the numerical data and are set according to:

Type of Term	A	B
outer factor N	matrix value of N	omit
constant term C	matrix value of C	omit
variable term	matrix value of A	matrix value of B
$A X B$ or $A X^{T} B$	$(1$ if A is absent $)$	$(1$ if B is absent $)$

Note that identity outer factors and zero constant terms need not be specified.
The extra argument flag is optional and concerns only conjugated expressions of the form

$$
(A X B) \quad+\quad(A X B)^{T} \quad=\quad A X B \quad+\quad B^{T} X^{T} A^{T}
$$

in diagonal blocks. Setting flag $=$'s' allows you to specify such expressions with a single lmiterm command. For instance,
lmiterm([1 111 X$\left.], \mathrm{A}, 1, \mathrm{~s}^{\prime}\right)$
adds the symmetrized expression $A X+X^{T} A^{T}$ to the $(1,1)$ block of the first LMI and summarizes the two commands
lmiterm([11 $1 \times 1 \times], A, 1)$
lmiterm([1 $11 \begin{aligned} & \left.\text { - X }], 1, A^{\prime}\right)\end{aligned}$
Aside from being convenient, this shortcut also results in a more efficient representation of the LMI.

Examples

Specify LMI Terms

Consider the LMI

$$
\left(\begin{array}{cc}
2 A X_{2} A^{T}-x_{3} E+D D^{T} & B^{T} X_{1} \\
X_{1}^{T} B & -I
\end{array}\right)<M^{T}\left(\begin{array}{cc}
C X_{1} C^{T}+C X_{1}^{T} C^{T} & 0 \\
0 & -f X_{2}
\end{array}\right) M
$$

where X_{1}, X_{2} are matrix variables of Types 2 and 1 , respectively, and x_{3} is a scalar variable (Type 1).
After you initialize the LMI description using setlmis and declare the matrix variables using lmivar, specify the terms on the left side of this LMI.

```
lmiterm([1 1 1 X2],2*A,A') % 2*A*X2*A'
lmiterm([1 1 1 1 x3],-1,E) % -x3*E
lmiterm([[1 1 1 1 0],D*D') % D*D'
lmiterm([1 2 1 -X1],1,B) % X1'*B
lmiterm([1 2 2 0],-1) % -I
```

Here $\mathrm{X} 1, \mathrm{X} 2$, and x 3 are the variable identifiers returned by lmivar when you declare the variables.
Similarly, specify the term content of the right side.

```
lmiterm([-1 0 0 0],M) % outer factor M
lmiterm([-1 1 1 1 X1],C,C','s') % C*X1*C'+C*X1'*C'
lmiterm([-1 1 2 2 X2],-f,1) % -f*X2
```

Note that $C X_{1} C^{T}+C X_{1}{ }^{T} C^{T}$ is specified by a single lmiterm command with the flag 's' to ensure proper symmetrization.

See Also

getlmis | lmiedit| lmivar|newlmi| setlmis
Introduced before R2006a

Imivar

Specify matrix variables in LMI problem

Syntax

X = lmivar(type,struct)
$[\mathrm{X}, \mathrm{n}, \mathrm{sX}]=$ lmivar(type,struct)

Description

lmivar defines a new matrix variable X in the LMI system currently described. The optional output X is an identifier that can be used for subsequent reference to this new variable.

The first argument type selects among available types of variables and the second argument struct gives further information on the structure of X depending on its type. Available variable types include:
type=1: Symmetric matrices with a block-diagonal structure. Each diagonal block is either full (arbitrary symmetric matrix), scalar (a multiple of the identity matrix), or identically zero.

If X has R diagonal blocks, struct is an R-by- 2 matrix where

- struct $(r, 1)$ is the size of the r-th block
- struct ($r, 2$) is the type of the r-th block (1 for full, 0 for scalar, -1 for zero block).
type=2: Full m-by- n rectangular matrix. Set struct $=[m, n]$ in this case .
type=3: Other structures. With Type 3, each entry of X is specified as zero or $\pm x$ where x_{n} is the n-th decision variable.

Accordingly, struct is a matrix of the same dimensions as X such that

- struct $(i, j)=0$ if $X(i, j)$ is a hard zero
- struct $(\mathrm{i}, \mathrm{j})=\mathrm{n}$ if $X(i, j)=x_{n}$
- struct $(\mathrm{i}, \mathrm{j})=-\mathrm{n}$ if $X(i, j)=-x_{n}$

Sophisticated matrix variable structures can be defined with Type 3 . To specify a variable X of Type 3, first identify how many free independent entries are involved in X. These constitute the set of decision variables associated with X. If the problem already involves n decision variables, label the new free variables as x_{n+1}, \ldots, x_{n+p}. The structure of X is then defined in terms of x_{n+1}, \ldots, x_{n+p} as indicated above. To help specify matrix variables of Type 3, lmivar optionally returns two extra outputs: (1) the total number n of scalar decision variables used so far and (2) a matrix sX showing the entry-wise dependence of X on the decision variables x_{1}, \ldots, x_{n}.

Examples

Type 1 and Type 2 Matrix Variables

Consider an LMI system with three matrix variables X_{1}, X_{2}, and X_{3} such that

- X_{1} is a 3-by-3 symmetric matrix (unstructured),
- X_{2} is a 2-by-4 rectangular matrix (unstructured),
- $X_{3}=$

$$
\left(\begin{array}{ccc}
\Delta & 0 & 0 \\
0 & \delta_{1} & 0 \\
0 & 0 & \delta_{2} I_{2}
\end{array}\right),
$$

where Δ is an arbitrary 5 -by- 5 symmetric matrix, δ_{1} and δ_{2} are scalars, and I_{2} denotes the identity matrix of size 2 .

Define these three variables using lmivar.

```
setlmis([])
X1 = lmivar(1,[3 1]); % Type 1
X2 = lmivar(2,[2 4]); % Type 2 of dimension 2-by-4
X3 = lmivar(1,[5 1;1 0;2 0]); % Type 1
```

The last command defines X_{3} as a variable of Type 1 with one full block of size 5 and two scalar blocks of sizes 1 and 2, respectively.

Type 3 Matrix Variables

Combined with the extra outputs n and sX of lmivar, Type 3 allows you to specify fairly complex matrix variable structures. For instance, consider a matrix variable X with structure given by:

$$
X=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right)
$$

where X_{1} and X_{2} are 2-by-3 and 3-by-2 rectangular matrices, respectively. Specify this structure as follows.

Define the rectangular variables X_{1} and X_{2}.

```
setlmis([])
[X1,n,sX1] = lmivar(2,[2 3]);
[X2,n,sX2] = lmivar(2,[3 2]);
```

The outputs sX1 and sX2 give the decision variable content of X_{1} and X_{2}.
sX1
$s \times 1=2 \times 3$

1	2	3
4	5	6

```
sX2
sX2 = 3\times2
    7 8
    9 10
    11 12
```

For instance, $s \times 2(1,1)=7$ means that the $(1,1)$ entry of X_{2} is the seventh decision variable.
Next, use Type 3 to specify the matrix variable X, and define its structure in terms of the structures of X_{1} and X_{2}.
$[\mathrm{X}, \mathrm{n}, \mathrm{sX}]=$ lmivar(3,[sX1,zeros(2);zeros(3),sX2]);
Confirm that the resulting X has the desired structure.
sX
$s X=5 \times 5$

1	2	3	0	0
4	5	6	0	0
0	0	0	7	8
0	0	0	9	10
0	0	0	11	12

See Also

delmvar|getlmis|lmiedit|lmiterm| setlmis|setmvar|skewdec

Introduced before R2006a

Incf

Left normalized coprime factorization

Syntax

fact $=\operatorname{lncf}(s y s)$
[fact,Ml,Nl] = lncf(sys)

Description

fact $=\operatorname{lncf}($ sys $)$ computes the left normalized coprime factorization of the dynamic system model sys. The factorization is given by:

$$
\text { sys }=M_{l}^{-1} N_{l}, \quad M_{l} M_{l}^{*}+N_{l} N_{l}^{*}=I .
$$

Here, M_{l}^{*} denotes the conjugate of M_{l} (see ctranspose). . The returned model fact is a minimal state-space realization of the stable system $\left[M_{l,} N_{l}\right]$. This factorization is used in other normalized coprime factor computations such as model reduction ($n c f m r$) and controller synthesis (ncfsyn).
[fact, $\mathrm{Ml}, \mathrm{Nl}]=\operatorname{lncf}($ sys $)$ also returns the coprime factors M_{l} and N_{l}.

Examples

Left Normalized Coprime Factorization of SISO System

Compute the left normalized coprime factorization of a SISO system.

```
sys = zpk([1 -1+2i -1-2i],[-1 2+1i 2-1i],1);
[fact,Ml,Nl] = lncf(sys);
```

Examine the original system and its factors.
sys
sys =
$(s-1)\left(s^{\wedge} 2+2 s+5\right)$
$(s+1) \quad\left(s^{\wedge} 2-4 s+5\right)$
Continuous-time zero/pole/gain model.
zpk(Ml)
ans =
$0.70711(s+1)\left(s^{\wedge} 2-4 s+5\right)$
--------------------------$(s+1)\left(s^{\wedge} 2+3.162 s+5\right)$

Continuous-time zero/pole/gain model.

```
zpk(Nl)
ans =
    0.70711 (s-1) (s^2 + 2s + 5)
        (s+1) ( s^2 + 3.162s + 5)
```

Continuous-time zero/pole/gain model.

The numerators of the factors Ml and Nl are the denominator and numerator of sys, respectively. Thus, sys $=\mathrm{Ml} \backslash \mathrm{Nl}$. Incf chooses the denominators of the factors such that the system $\left[M_{l}(j \omega), N_{l}(j \omega)\right]$ is a unit vector at all frequencies. To confirm that property of the factorization, examine the singular values of fact, which is a stable minimal realization of $\left[M_{l}(j \omega), N_{l}(j \omega)\right]$.
sigma(fact)

Within a small numerical error, the singular value of fact is $1(0 \mathrm{~dB})$ at all frequencies.

Left Normalized Coprime Factorization of MIMO System

Compute the left normalized coprime factorization of a state-space model that has two outputs, two inputs, and three states.

```
rng(0); % for reproducibility
sys = rss(3,2,2);
[fact,Ml,Nl] = lncf(sys);
```

fact is a stable minimal realization of the factorization given by [Ml, Nl].

```
isstable(fact)
ans = logical
    1
```

Another property of fact is that its frequency response $F(j \omega)$ is an orthogonal matrix at all frequencies $\left(F(j \omega)^{\prime} F(j \omega)=I\right)$. Confirm this property by examining the singular values of fact. Within a small numerical error, the singular values are $1(0 \mathrm{~dB})$ at all frequencies.
sigma(fact)

Confirm that the factors satisfy sys $=M \backslash \backslash N l$ by examining the singular values of both.

```
sigma(sys,'b-',Ml\Nl,'r--')
```


Input Arguments

sys - Input system

dynamic system model
Input system to factorize, specified as a dynamic system model such as a state-space (ss) model. If sys is a generalized state-space model with uncertain or tunable control design blocks, then the function uses the nominal or current value of those elements. sys cannot be an frd model or a model with time delays.

Output Arguments

fact - Minimal realization of [ML, NL]

ss model
Minimal realization of [Ml, Nl], returned as a state-space model. fact is stable and its frequency response is an orthogonal matrix at all frequencies. If sys has p outputs and m inputs, then fact has p outputs and $m+p$ inputs. fact has the same number of states as sys.

Ml, NL - Left coprime factors

ss models
Left coprime factors of sys, returned as state-space models. If sys has p outputs and m inputs, then:

- Ml has p outputs and p inputs.
- Nl has p outputs and m inputs.

Both factors have the same number of states as sys and the same A and C matrices as fact.

Tips

- fact is a minimal realization of [Ml, Nl]. If you need to use [Ml, Nl] or [Ml, Nl] ' in a computation, it is better to use fact than to concatenate the factors yourself. Such manual concatenation results in extra (nonminimal) states, which can lead to decreased numerical accuracy.

See Also

ncfmr|ncfsyn | rncf
Introduced in R2019a

loopmargin

(Not recommended) Stability margin analysis of LTI and Simulink feedback loops

Note loopmargin is not recommended. Use diskmargin or allmargin instead. For more information, see "Compatibility Considerations".

Syntax

[cm,dm,mm] = loopmargin(L)
[m1,...,mn] = loopmargin(L,MFLAG)
[cmi,dmi,mmi,cmo,dmo,mmo,mmio] = loopmargin(P, C)
[m1,...,mn] = loopmargin(P,C,MFLAG)
[cm,dm,mm] = loopmargin(Model,Blocks,Ports)
[cm,dm,mm,info] = loopmargin(Model,Blocks,Ports,OP)
[m1,...,mn,info] = loopmargin(Model,Blocks,Ports,MFLAG)
[m1,...,mn,info] = loopmargin(Model,Blocks,Ports,OP,MFLAG)

Description

[cm, dm, mm] = loopmargin(L) analyzes the multivariable feedback loop consisting of the loop transfer matrix L (size N-by- N) in negative feedback with an N-by- N identity matrix.
cm, or classical gain and phase margins, is an N-by-1 structure corresponding to loop-at-a-time gain and phase margins for each channel. L is an LTI model. Use -L to specify positive feedback.
dm is an N-by-1 structure corresponding to loop-at-a-time disk gain and phase margins for each channel. The disk margin for the i-th feedback channel defines a circular region centered on the negative real axis at the average GainMargin (GM), e.g. , $\left(\mathrm{GM}_{\mathrm{low}}+\mathrm{GM}_{\text {high }}\right) / 2$, such that $\mathrm{L}(\mathrm{i}, \mathrm{i})$ does not enter that region. Gain and phase disk margin bounds are derived from the radius of the circle, calculated based on the balanced sensitivity function.
mm , the multiloop disk margin, is a structure. mm describes how much independent and concurrent gain and phase variation can occur independently in each feedback channel while maintaining stability of the closed-loop system. Note that mm is a single structure, independent of the number of channels. This is because variations in all channels are considered simultaneously. As in the case for disk margin, the guaranteed bounds are calculated based on a balanced sensitivity function.
[m1, ..., mn] = loopmargin(L,MFLAG) returns a subset of the margins, specified by the character vector MFLAG. This optional argument may be any combination, in any order, of the 3 characters 'c','d' and 'm'. For example, $[m 1, m 2]=$ loopmargin($L, ' m, c$ ') returns the multiloop disk margin (' m ') in m 1 , and the classical margins (' c ') in m 2 . Use ' d ' to specify the disk margin.
[cmi,dmi,mmi, cmo,dmo,mmo,mmio] = loopmargin(P, C) analyzes the multivariable feedback loop consisting of the controller C in negative feedback with the plant, P. C should only be the compensator in the feedback path, without reference channels, if it is a 2 -dof architecture. That is, if the closed-loop system has a 2-dof architecture the reference channel of the controller should be eliminated, resulting in a 1 -dof architecture, as shown.

2-dof architecture

1-dof architecture
$\mathrm{cmi}, \mathrm{dmi}$ and mmi structures correspond to the classical loop-at-a-time gain and phase margins, disk margins and multiloop channel margins at the plant input respectively. The structures cmo, dmo and mmo have the same fields as described for cmi , dmi and mmi though they correspond to the plant outputs. mmio, or multi-input/multi-output margins, is a structure corresponding to simultaneous, independent, variations in all the individual input and output channels of the feedback loops. mmio has the same fields as mmi and mmo.
[m1, ...,mn] = loopmargin(P,C,MFLAG) returns a subset of the margins, specified by MFLAG. This optional argument may be any combination, in any order, of the 7 character pairs 'ci ' , 'di', 'mi','co','do, 'mo', and 'mm'. For example,[m1,m2,m3] = loopmargin(P, C,'mo,ci,mm') returns the multi-loop disk margin at the plant output ('mo') in ml , the classical margins at the plant input ('ci') in m2, and the multi-loop disk margins for simultaneous, independent variations in all input and output channels (' mm ') in m3.

Usage with Simulink

[cm,dm,mm] = loopmargin(Model,Blocks,Ports) does a multi-loop stability margin analysis using Simulink Control Design software. Model specifies the name of the Simulink diagram for analysis. The margin analysis points are defined at the output ports (Ports) of blocks (Blocks) within the model. Blocks is a cell array of full block path names and Ports is a vector of the same dimension as Blocks. If all Blocks have a single output port, then Ports would be a vector of ones with the same length as Blocks.

Three types of stability margins are computed: loop-at-a-time classical gain and phase margins (cm), loop-at-a-time disk margins (dm) and a multi-loop disk margin (mm).
[cm,dm,mm] = loopmargin(Model,Blocks,Ports,OP) uses the operating point object OP to create linearized systems from the Simulink Model.
[cm,dm,mm,info] = loopmargin(Model,Blocks,Ports,OP) returns info in addition to the margins. info is a structure with fields OperatingPoint, LinearizationIO and SignalNames corresponding to the analysis.
[m1, ...,mn,info] = loopmargin(Model,Blocks,Ports,MFLAG) and [m1,...,mn,info] = loopmargin(Model, Blocks, Ports, OP , MFLAG) return a subset of the margins, specified by the character vector MFLAG. This optional argument may be any combination, in any order, of the 3 characters 'c', 'd' and 'm'. For example, [m1,m2] = loopmargin(Model, Blocks,Ports,'m, c') returns the multi-loop disk margin ('m') in m1, and the classical margins (' c ') in m 2 . Use ' d ' to specify the disk margin.

Basic Syntax

[$\mathrm{cm}, \mathrm{dm}, \mathrm{mm}$] = loopmargin(L) cm is calculated using the allmargin command and has the same fields as allmargin. The output cm is an N -by-1 structure of classical gain and phase margins for each feedback channel with all other loops closed. cm has the following fields:

Field	Description
GMF requency	All -180 deg crossover frequencies (in radians-per-second)
GainMargin	Corresponding gain margins (GM $=1 / \mathrm{L}$ where L is the gain at crossover)
PhaseMargin	Corresponding phase margins (in degrees)
PMFrequency	All 0 dB crossover frequencies (in radians-per-second)
DelayMargin	Delay margins (in seconds for continuous-time systems, and multiples of the sample time for discrete-time systems)
Stable	1 if nominal closed loop is stable, 0 otherwise. If L is a frd or ufrd object, the Stable flag is set to NaN.

dm, or Disk Margin, is an N-by-1 structure of disk margins for each feedback channel with all other loops closed. dm has the following fields:

Field	Description
GainMargin	Smallest gain variation (GM) such that a disk centered at the point -(GM(1) + GM(2))/2 just touches the Nyquist plot of the loop transfer function.
PhaseMargin	Smallest phase variation, in degrees, corresponding to the disk described in the GainMargin field.
Frequency	Frequency with the weakest disk margin, in rad/TimeUnit, where TimeUnit is the TimeUnit property of L. For frd models, loopmargin computes margins at all the frequency points in the model, and returns the frequency with the weakest margin of these values.

mm is a structure with the following fields.

Field	Description
GainMargin	Guaranteed bound on simultaneous, independent, gain variations allowed in all plant channels.
PhaseMargin	Guaranteed bound on simultaneous, independent, phase variations allowed in all plant channels (degrees).
Frequency	Frequency with the weakest disk margin, in rad/TimeUnit, where TimeUnit is the TimeUnit property of L. For frd models, loopmargin computes margins at all the frequency points in the model, and returns the frequency with the weakest margin of these values.

Relationship Between Disk Margin and Gain and Phase Margins

The disk margin is based on a multiplicative uncertainty model in which the loop gain L of each loop channel becomes

$$
L \rightarrow L \frac{1+\Delta / 2}{1-\Delta / 2}, \quad|\Delta|<\alpha
$$

where Δ is complex. The uncertainty size α is the disk margin. The uncertain quantity $(1+\Delta) /(1-\Delta)$ has a gain component and a phase component. Thus, enforcing a disk margin α also enforces minimum gain and phase margins given by

$$
\begin{aligned}
& G M=\frac{1+\alpha}{1-\alpha}, \\
& P M=2 \arctan (\alpha),
\end{aligned}
$$

with $G M$ in absolute units and $P M$ in degrees. The gain and phase margins are therefore related by

$$
G M=\frac{1+\tan (P M / 2)}{1-\tan (P M / 2)} .
$$

When you specify independent gain and phase margins for tuning, the software chooses the smallest α that enforces both values, which is

$$
\alpha=\max \left[\frac{G M-1}{G M+1}, \tan (P M / 2)\right] .
$$

Note that $G M$ and $P M$ are not the same as the classical gain and phase margins. Rather, they provide stronger guarantees of stability, because both of the following can occur at the same time without loss of stability:

- The loop gain can increase or decrease by a factor of $G M$, and
- The loop phase can increase or decrease by $P M$ degrees.

By contrast, the classical gain and phase margins consider only gain variations or phase variations at a single frequency, the crossover frequency.

Examples

MIMO Loop-at-a-Time Margins

This example shows how to compute loop-at-a-time margins (gain, phase, and/or distance to -1), and also illustrates that such margins can be inaccurate measures of multivariable robustness margins. Margins of individual loops can be very sensitive to small perturbations within other loops.

Consider the nominal closed-loop system of the following illustration.

G and K are 2-by-2 (MIMO) systems, given by:

$$
G=\frac{1}{s^{2}+\alpha^{2}}\left[\begin{array}{cc}
s^{2}-\alpha^{2} & \alpha(s+1) \\
-\alpha(s+1) & s^{2}-\alpha^{2}
\end{array}\right], K=\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right] .
$$

Set $\alpha=10$, construct G in state-space form, and compute the loop margins.

```
a = [0 10;-10 0];
b = eye(2);
c = [1 8;-10 1];
```

```
d = zeros(2,2);
G = ss(a,b,c,d);
K = [1 -2;0 1];
[cmi,dmi,mmi,cmo,dmo,mmo,mmio] = loopmargin(G,K);
```

First consider the margins at the input to the plant. The first input channel has infinite gain margin and 90 degrees of phase margin based on the results from the loopmargin command, cmi(1).

```
cmi(1)
```

```
ans = struct with fields:
    GainMargin: [1x0 double]
    GMFrequency: [1x0 double]
    PhaseMargin: 90
    PMFrequency: 21
    DelayMargin: 0.0748
    DMFrequency: 21
        Stable: 1
```

The disk margin analysis, dmi, of the first channel provides similar results.

```
dmi(1)
ans = struct with fields:
    GainMargin: [0 Inf]
    PhaseMargin: [-90 90]
        Frequency: 0
```

The second input channel has a gain margin of 2.105 and infinite phase margin based on the singleloop analysis, cmi(2).

```
cmi(2)
ans = struct with fields:
    GainMargin: 2.1053
    GMFrequency: 0
    PhaseMargin: [1x0 double]
    PMFrequency: [1x0 double]
    DelayMargin: [1x0 double]
    DMFrequency: [1x0 double]
            Stable: 1
```

The disk margin analysis, $\mathrm{dmi}(2)$, which allows for simultaneous gain and phase variations a loop-at-a-time results in maximum gain margin variations of 0.475 and 2.105 and phase margin variations of +/- 39.18 degs.
dmi(2)

```
ans = struct with fields:
    GainMargin: [0.4750 2.1053]
    PhaseMargin: [-39.1846 39.1846]
        Frequency: 0
```

The multiple margin analysis of the plant inputs corresponds to allowing simultaneous, independent gain and phase margin variations in each channel. Allowing independent variation of the input
channels further reduces the tolerance of the closed-loop system to variations at the input to the plant. The multivariable margin analysis, mmi, leads to a maximum allowable gain margin variation of 0.728 and 1.373 and phase margin variations of $+/-17.87$ deg. Hence even though the first channel had infinite gain margin and 90 degrees of phase margin, allowing variation in both input channels leads to a factor of two reduction in the gain and phase margin.

```
mmi
mmi = struct with fields:
    GainMargin: [0.7288 1.3721]
    PhaseMargin: [-17.8304 17.8304]
        Frequency: 0
```

The guaranteed region of phase and gain variations for the closed-loop system can be illustrated graphically. The disk margin analysis, dmi (2), indicates the closed-loop system will remain stable for simultaneous gain variations of 0.475 and $2.105(\pm 6.465 \mathrm{~dB})$ and phase margin variations of ± 39.18 deg in the second input channel. This is denoted by the region associated with the large ellipse in the following figure. The multivariable margin analysis at the input to the plant, mmi, indicates that the closed-loop system will be stable for independent, simultaneous, gain margin variation up to 0.728 and 1.373 ($\pm 2.753 \mathrm{~dB}$) and phase margin variations up to ± 17.87 deg (the dark ellipse region) in both input channels.

The output channels have single-loop margins of infinite gain and 90 deg phase variation. The output multivariable margin analysis, mmo, leads to a maximum allowable gain margin variation of 0.607 and 1.649 and phase margin variations of $+/-27.53$ degs. Hence even though both output channels had infinite gain margin and 90 degrees of phase margin, simultaneous variations in both channels significantly reduce the margins at the plant outputs.

```
mmo
mmo = struct with fields:
    GainMargin: [0.6070 1.6474]
    PhaseMargin: [-27.4826 27.4826]
```

The margins when all the input and output channels are allowed to vary independently are in the output mmio. For this system, this output shows that the allowable gain margin variations are 0.827 and 1.210 and allowable phase margin variations are $+/-10.84$ deg.
mmio

```
mmio = struct with fields:
    GainMargin: [0.8270 1.2092]
    PhaseMargin: [-10.8190 10.8190]
        Frequency: 0
```


Algorithms

Two well-known loop robustness measures are based on the sensitivity function $S=(I-L)^{-1}$ and the complementary sensitivity function $T=L(I-L)^{-1}$ where L is the loop gain matrix associated with the input or output loops broken simultaneously. In the following figure, S is the transfer matrix from summing junction input u to summing junction output $e . T$ is the transfer matrix from u to y. If signals e and y are summed, the transfer matrix from u to $e+y$ is given by $(I+L) \cdot(I-L)^{-1}$, the balanced sensitivity function. It can be shown (Dailey, 1991, Blight, Daily and Gangass, 1994) that each brokenloop gain can be perturbed by the complex gain $(1+\Delta)(1-\Delta)$ where $|\Delta|<1 / \mu(S+T)$ or $|\Delta|<1 / \sigma_{\max }(S+T)$ at each frequency without causing instability at that frequency. The peak value of $\mu(S+T)$ or $\sigma_{\max }(S$ $+T)$ gives a robustness guarantee for all frequencies, and for $\mu(S+T)$ the guarantee is nonconservative (Blight, Daily and Gangass, 1994).

$$
\begin{array}{rlcll}
e & = & (I-L)^{-1} u & & S u \\
y & = & L(I-L)^{-1} u & = & T u \\
e+y & = & (I+L) \cdot(I-L)^{-1} u & = & (S+T) u
\end{array}
$$

This figure shows a comparison of a disk margin analysis with the classical notations of gain and phase margins.

The Nyquist plot is of the loop transfer function $L(s)$

$$
L(s)=\frac{\frac{s}{30}+1}{(s+1)\left(s^{2}+1.6 s+16\right)}
$$

- The Nyquist plot of L corresponds to the blue line.
- The unit disk corresponds to the dotted red line.
- GM and PM indicate the location of the classical gain and phase margins for the system L.
- DGM and DPM correspond to the disk gain and phase margins. The disk margins provide a lower bound on classical gain and phase margins.
- The disk margin circle corresponds to the dashed black line. The disk margin corresponds to the largest disk centered at (GMD + 1/GMD)/2 that just touches the loop transfer function L. This location is indicated by the red dot.

The disk margin and multiple channel margins calculation involve the balanced sensitivity function S $+T$. For a given peak value of $\mu(S+T)$, any simultaneous phase and gain variations applied to each loop independently will not destabilize the system if the perturbations remain inside the corresponding circle or disk. This corresponds to the disk margin calculation to find dmi and dmo.

Similarly, the multiple channel margins calculation involves the balanced sensitivity function $S+T$. Instead of calculating $\mu(S+T)$ a single loop at a time, all the channels are included in the analysis. A μ-analysis problem is formulated with each channel perturbed by an independent, complex perturbation. The peak $\mu(S+T)$ value guarantees that any simultaneous, independent phase and gain variations applied to each loop simultaneously will not destabilize the system if they remain inside the corresponding circle or disk of size $\mu(S+T)$.

For frequency-response data (frd) models, loopmargin uses the techniques of μ-analysis to compute the disk margin at each frequency point in the model, and returns the weakest margin of these values. For all other models, the μ-analysis computation identifies the frequency with the weakest margin.

Compatibility Considerations

loopmargin is not recommended

Not recommended starting in R2018b
To compute disk-based stability margins of SISO and MIMO systems, use diskmargin. For loop-at-atime classical gain margins, use allmargin. For stability margin analysis of feedback loops modeled in Simulink, first linearize the model and then use diskmargin.
diskmargin, introduced in R2018b, has improved numeric stability and more reliable results relative to loopmargin. The new command also includes an option for varying the eccentricity of the disk for better margin estimates. For more information, see diskmargin.
Update Code
To update your code to use diskmargin or allmargin:

Old code	New code
[CM, DM, MM] = loopmargin(L)	[DM, MM] = diskmargin(L) returns the disk margins of each feedback channel with all other loops closed in the structure DM, and the multiloop disk margin in the structure MM. S = allmargin(L) returns the classical loop-at-a-time gain and phase margins returned by loopmargin as CM. The margins are organized differently in the structure S. For more information, enter help allmargin at the MATLAB command prompt.
$\begin{aligned} & \text { [CMI, DMI ,MMI, CMO, DMO , MMO, MMIO] = } \\ & \text { loopmargin(P, C) } \end{aligned}$	MMIO = diskmargin(L) All the multiloop disk margins returned by loopmargin are in the structure MMIO.
$\begin{aligned} & {[\mathrm{cm}, \mathrm{dm}, \mathrm{~mm}]=} \\ & \text { loopmargin(Model, Blocks, Ports) } \end{aligned}$	First linearize the Simulink model and then use diskmargin or allmargin.

References

Barrett, M.F., Conservatism with robustness tests for linear feedback control systems, Ph.D. Thesis, Control Science and Dynamical Systems, University of Minnesota, 1980.

Blight, J.D., R.L. Dailey, and D. Gangsass, "Practical control law design for aircraft using multivariable techniques," International Journal of Control, Vol. 59, No. 1, 1994, pp. 93-137.

Bates, D., and I. Postlethwaite, "Robust Multivariable Control of Aerospace Systems," Delft University Press, Delft, The Netherlands, ISBN: 90-407-2317-6, 2002.

See Also

allmargin|diskmargin|loopsens|robstab|wcdiskmargin|wcgain

Introduced before R2006a

loopsens

Sensitivity functions of plant-controller feedback loop

Syntax

```
loops = loopsens(P,C)
```


Description

loops $=$ loopsens (P, C) creates a struct, loops, whose fields contain the multivariable sensitivity, complementary and open-loop transfer functions. The closed-loop system consists of the controller C in negative feedback with the plant P. C should only be the compensator in the feedback path, not any reference channels, if it is a 2-Dof controller as seen in the figure below. The plant and compensator P and C can be constant matrices, double, lti objects, $\mathrm{frd} / \mathrm{ss} / \mathrm{tf} / \mathrm{zpk}$, or uncertain objects umat/ufrd/uss.

The loops returned variable is a structure with fields:

Field	Description
Poles	Closed-loop poles. NaN for frd/ufrd objects
Stable	1 if nominal closed loop is stable, 0 otherwise. NaN for frd/ufrd objects
Si	Input-to-plant sensitivity function
Ti	Input-to-plant complementary sensitivity function
Li	Input-to-plant loop transfer function
So	Output-to-plant sensitivity function
To	Output-to-plant complementary sensitivity function
Lo	Output-to-plant loop transfer function
PSi	Plant times input-to-plant sensitivity function
CSo	Compensator times output-to-plant sensitivity function

The multivariable closed-loop interconnection structure, shown below, defines the input/output sensitivity, complementary sensitivity, and loop transfer functions.

The following table gives the values of the input and output sensitivity functions for this control structure.

Description	Equation
Input sensitivity S_{i} (closed-loop transfer function from d_{1} to e_{1})	$S_{i}=(I+C P)^{-1}$
Input complementary sensitivity T_{i} (closed-loop transfer function from d_{1} to e_{2})	$T_{i}=C P(I+C P)^{-1}$
Output sensitivity S_{o} (closed-loop transfer function from d_{2} to e_{2})	$S_{o}=(I+P C)^{-1}$
Output complementary sensitivity T_{o} (closed-loop transfer function from d_{2} to e_{4})	$T_{o}=P C(I+P C)^{-1}$
Input loop transfer function L_{i}	$L_{i}=C P$
Output loop transfer function L_{o}	$L_{o}=P C$

Examples

Single Input, Single Output (SISO) Loop Sensitivities

Consider PI controller for a dominantly 1st-order plant, with the closed-loop bandwidth of 2.5 rads/ sec. Since the problem is SISO, all gains are the same at input and output.

```
gamma = 2; tau = 1.5; taufast = 0.1;
P = tf(gamma,[tau 1])*tf(1,[taufast 1]);
tauclp = 0.4;
xiclp = 0.8;
wnclp = 1/(tauclp*xiclp);
KP = (2*xiclp*wnclp*tau - 1)/gamma;
KI = wnclp^2*tau/gamma;
C = tf([KP KI],[1 0]);
```

Form the closed-loop (and open-loop) systems with loopsens, and plot Bode plots using the gains at the plant input.

```
loops = loopsens(P,C);
bode(loops.Si,'r',loops.Ti,'b',loops.Li,'g')
```


Bode Diagram

Finally, compare the open-loop plant gain to the closed-loop value of PSi.
bodemag(P,'r',loops.PSi,'b')

Bode Diagram

Multi Input, Multi Output (MIMO) Loop Sensitivities

Consider an integral controller for a constant-gain, 2-input, 2-output plant. For purposes of illustration, the controller is designed via inversion, with different bandwidths in each rotated channel.

```
P = ss([2 3;-1 1]);
BW = diag([2 5]);
[U,S,V] = svd(P.d); % get SVD of Plant Gain
Csvd = V*inv(S)*BW*tf(1,[1 0])*U'; % inversion based on SVD
loops = loopsens(P,Csvd);
bode(loops.So,'g',loops.To,'r.',logspace(-1,3,120))
title('Output Sensitivity (green), Output Complementary Sensitivity (red)');
```

Output Sensitivity (green), Output Complementary Sensitivity (red)

See Also

diskmargin|robstab|wcdiskmargin|wcgain
Introduced before R2006a

loopsyn

H_{∞} optimal controller synthesis for LTI plant

Syntax

[K, CL, GAM, INFO]=loopsyn(G,Gd)
[K, CL, GAM, INFO]=loopsyn(G,Gd,RANGE)

Description

loopsyn is an H_{∞} optimal method for loopshaping control synthesis. It computes a stabilizing H_{∞} controller K for plant G to shape the sigma plot of the loop transfer function $G K$ to have desired loop shape G_{d} with accuracy $\gamma=$ GAM in the sense that if ω_{0} is the 0 db crossover frequency of the sigma plot of $G_{d}(j \omega)$, then, roughly,
$\underline{\sigma}(G(j \omega) K(j \omega)) \geq \frac{1}{\gamma} \underline{\sigma}\left(G_{d}(j \omega)\right)$ for all $\omega>\omega_{0}$
$\underline{\sigma}(G(j \omega) K(j \omega)) \leq \gamma \underline{\sigma}\left(G_{d}(j \omega)\right)$ for all $\omega>\omega_{0}$
The STRUCT array INFO returns additional design information, including a MIMO stable min-phase shaping pre-filter W, the shaped plant $G_{s}=G W$, the controller for the shaped plant $K_{s}=W K$, as well as the frequency range $\left\{\omega_{\min }, \omega_{\max }\right\}$ over which the loop shaping is achieved

Input Argument	Description
G	LTI plant
Gd	Desired loop-shape (LTI model)
RANGE	(optional, default $\{0$, Inf $\})$ Desired frequency range for loop-shaping, a 1-by-2 cell array $\left\{\omega_{\min }, \omega_{\max }\right\} ; \omega_{\max }$ should be at least ten times $\omega_{\min }$

Output Argument	Description
K	LTI controller
CL $=G * K /(\mathrm{I}+\mathrm{GK})$	LTI closed-loop system
GAM	Loop-shaping accuracy (GAM ≥ 1, with GAM=1 being perfect fit
INFO	Additional output information
INFO.W	LTI pre-filter W satisfying $\sigma\left(G_{d}\right)=\sigma(G W)$ for all $\omega ;$ W is always minimum-phase.
INF0.Gs	LTI shaped plant: $G_{s}=G W$.
INFO.Ks	LTI controller for the shaped plant: $K_{s}=W K$.
INFO. range	$\left\{\omega_{\text {min }}, \omega_{\text {max }}\right\}$ cell-array containing the approximate frequency range over which loop-shaping could be accurately achieved to with accuracy G. The output INF0. range is either the same as or a subset of the input range.

Examples

Optimal loopsyn Loop-Shaping Control

Calculate the optimal loopsyn loop shaping control for a 5 -state, 4 -output, 5 -input plant with a fullrank nonmininum-phase zero at $s=10$.

```
rng(0,'twister');
s = tf('s');
w0 = 5;
Gd = 5/s; % desired bandwidth w0=5
G =((s-10)/(s+100))*rss(3,4,5); % 4-by-5 non-min-phase plant
[K,CL,GAM,INFO] = loopsyn(G,Gd);
sigma(G*K,'r',Gd*GAM,'k-.',Gd/GAM,'k-.',{.1,100}) % plot result
legend('G*K','Gd*GAM','Gd/GAM')
```


This plot shows that the controller K optimally fits sigma ($\mathrm{G} * \mathrm{~K}$). The controller falls between sigma (Gd) + GAM and sigma (Gd) - GAM (expressed in dB). In this example, GAM $=2.0423=6.2026$ dB.

Limitations

The plant G must be stabilizable and detectable, must have at least as many inputs as outputs, and must be full rank; i.e,

- $\operatorname{size}(G, 2) \geq \operatorname{size}(G, 1)$
- $\operatorname{rank}(f r \operatorname{req} \operatorname{resp}(G, w))=\operatorname{size}(G, 1)$ for some frequency w.

The order of the controller K can be large. Generically, when G_{d} is given as a SISO LTI, then the order N_{K} of the controller K satisfies

N_{K}			$N_{G s}$			N_{W}
$=$	$N_{y} N_{\text {Gd }}$	$+$		$N_{\text {RHP }}$	+	N_{W}
$=$	$N_{y} N_{\text {Gd }}$	+		$N_{\text {RHP }}$	+	N_{G}

where

- $\quad N_{y}$ denotes the number of outputs of the plant G.
- $N_{R H P}$ denotes the total number of nonstable poles and nonminimum-phase zeros of the plant G, including those on the stability boundary and at infinity.
- $\quad N_{G}, N_{G s}, N_{G d}$ and N_{W} denote the respective orders of G, G_{s}, G_{d} and W.

Model reduction can help reduce the order of $K-$ see reduce and ncfmr.

Algorithms

Using the GCD formula of Le and Safonov [1], loopsyn first computes a stable-minimum-phase loopshaping, squaring-down prefilter W such that the shaped plant $G_{s}=G W$ is square, and the desired shape G_{d} is achieved with good accuracy in the frequency range $\left\{\omega_{\min }, \omega_{\max }\right\}$ by the shaped plant; i.e.,

$$
\sigma\left(G_{d}\right) \quad \approx \quad \sigma\left(G_{s}\right) \quad \text { for } \quad \text { all } \quad \omega \quad \epsilon \quad\left\{\omega_{\min }, \omega_{\max }\right\}
$$

Then, loopsyn uses the Glover-McFarlane [2] normalized-coprime-factor control synthesis theory to compute an optimal "loop-shaping" controller for the shaped plant via Ks=ncfsyn(Gs) , and returns $\mathrm{K}=\mathrm{W} * \mathrm{Ks}$.

If the plant G is a continuous time LTI and
$1 \quad G$ has a full-rank D-matrix, and
2 no finite zeros on the $j \omega$-axis, and
$3\left\{\omega_{\min }, \omega_{\max }\right\}=[0, \infty]$,
then $G W$ theoretically achieves a perfect accuracy fit $\sigma\left(G_{d}\right)=\sigma(G W)$ for all frequency ω. Otherwise, loopsyn uses a bilinear pole-shifting bilinear transform [3] of the form

Gshifted=bilin(G,-1,'S_Tust', [$\left.\omega_{\text {min }}, \omega_{\text {max }}\right]$),
which results in a perfect fit for transformed Gshifted and an approximate fit over the smaller frequency range $\left[\omega_{\min }, \omega_{\max }\right.$] for the original unshifted G provided that $\omega_{\max } \gg \omega_{\min }$. For best results, you should choose $\omega_{\max }$ to be at least 100 times greater than $\omega_{\min }$. In some cases, the computation of the optimal W for Gshifted may be singular or ill-conditioned for the range [$\omega_{\min }, \omega_{\max }$], as when Gshifted has undamped zeros or, in the continuous-time case only, Gshifted has a D-matrix that is rank-deficient); in such cases, loopsyn automatically reduces the frequency range further, and returns the reduced range $\left[\omega_{\min }, \omega_{\max }\right.$] as a cell array in the output INFO. range $=\left\{\omega_{\min }, \omega_{\max }\right\}$

References

[1] Le, V.X., and M.G. Safonov. Rational matrix GCD's and the design of squaring-down compensators -a state space theory. IEEE Trans. Autom.Control, AC-36(3):384-392, March 1992.
[2] Glover, K., and D. McFarlane. Robust stabilization of normalized coprime factor plant descriptions with H_{∞}-bounded uncertainty. IEEE Trans. Autom. Control, AC-34(8):821-830, August 1992.
[3] Chiang, R.Y., and M.G. Safonov. H_{∞} synthesis using a bilinear pole-shifting transform. AIAA J. Guidance, Control and Dynamics, 15(5):1111-1115, September-October 1992.

See Also

mixsyn|ncfsyn

Topics

"Loop Shaping of HIMAT Pitch Axis Controller"
Introduced before R2006a

Itiarray2uss

Compute uncertain system bounding given LTI ss array

Compatibility

Note ltiarray2uss will be removed in a future release. Use ucover instead.

Syntax

```
usys = ltiarray2uss(P,Parray,ord)
[usys,wt] = ltiarray2uss(P,Parray,ord)
[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord)
[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord,'InputMult')
[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord,'OutputMult')
[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord,'Additive')
```


Description

The command ltiarray2uss, calculates an uncertain system usys with nominal value P, and whose range of behavior includes the given array of systems, Parray.
usys = ltiarray2uss(P,Parray,ord), usys is formulated as an input multiplicative uncertainty model,
usys $=P^{*}(I+w t * u l t i d y n(' I M u l t ',[s i z e(P, 2) ~ s i z e(P, 2)])$), where wt is a stable scalar system, whose magnitude overbounds the relative difference, (P - Parray)/P. The state order of the weighting function used to bound the multiplicative difference between P and Parray is ord. Both P and Parray must be in the classes ss/tf/zpk/frd. If P is an $f r d$ then usys will be a ufrd object, otherwise usys will be a uss object. The ultidyn atom is named based on the variable name of Parray in the calling workspace.
[usys,wt] = ltiarray2uss(P,Parray,ord), returns the weight wt used to bound the infinity norm of ((P - Parray)/P).
[usys,wt] = ltiarray2uss(P, Parray,ord,'OutputMult'), uses multiplicative uncertainty at the plant output (as opposed to input multiplicative uncertainty). The formula for usys is
usys $=(\mathrm{I}+\mathrm{wt*ultidyn('Name',[size(P,1)} \mathrm{size(P,1)])*P)}$.
[usys,wt] = ltiarray2uss(P, Parray,ord,'Additive'), uses additive uncertainty.
usys $=P+w t * u l t i d y n(' N a m e ',[\operatorname{size}(P, 1) \operatorname{size}(P, 2)])$. wt is a frequency domain overbound of the infinity norm of (Parray - P).
[usys,wt] = ltiarray2uss(P,Parray,ord,'InputMult'), uses multiplicative uncertainty at the plant input (this is the default). The formula for usys is usys = P*(I + wt*ultidyn('Name', [size(P,2) size(P,2)]) .
[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord,type) returns the norm of the difference (absolute difference for additive, and relative difference for multiplicative uncertainty) between the nominal model P and Parray. wt satisfies diffdata(w_i) < |wt(w_i)| at all frequency points.

Examples

Uncertain System Bounding an LTI Array

Consider a third order transfer function with an uncertain gain, filter time constant and a lightly damped flexible mode. This model is used to represent a physical system from which frequency response data is acquired.

```
gain = ureal('gain',10,'Perc',20);
tau = ureal('tau',.6,'Range',[.42 .9]);
wn = 40;
zeta = 0.1;
usys = tf(gain,[tau 1])*tf(wn^2,[1 2*zeta*wn wn^2]);
sysnom = usys.NominalValue;
parray = usample(usys,30);
om = logspace(-1,2,80);
parrayg = frd(parray,om);
bode(parrayg)
```


The frequency response data in parray represents 30 experiments performed on the system. The command ltiarray2uss is used to generate an uncertain model, umod, based on the frequency response data. Initially an input multiplicative uncertain model is used to characterize the collection of 30 frequency responses. First and second order input multiplicative uncertainty weight are calculated from the data.

```
[umodIn1,wtIn1,diffdataIn] = ltiarray2uss(sysnom,parrayg,1);
[umodIn2,wtIn2,diffdataIn] = ltiarray2uss(sysnom,parrayg,2);
bodemag(wtIn1,'b-',wtIn2,'g+',diffdataIn,'r.',om)
title('Input Multiplicative Uncertainty Model Using ltiarray2uss')
legend('1st order','2nd order','difference','Location','SouthEast')
```


Alternatively, an additive uncertain model is used to characterize the collection of 30 frequency responses.

```
[umodAdd1,wtAdd1,diffdataAdd] = ltiarray2uss(sysnom,parrayg,1,'Additive');
[umodAdd2,wtAdd2,diffdataAdd] = ltiarray2uss(sysnom,parrayg,2,'Additive');
bodemag(wtAdd1,'b-',wtAdd2,'g+',diffdataAdd,'r.',om)
title('Additive Uncertainty Model Using ltiarray2uss')
legend('1st order','2nd order','difference')
```


See Also

fitmagfrd|ultidyn|uss

Topics

"First-Cut Robust Design"
Introduced in R2006a

Itrsyn

LQG loop transfer-function recovery (LTR) control synthesis

Syntax

$[K, S V L, W 1]=\operatorname{ltrsyn}(G, F, X I$, THETA, RHO $)$
$[K, S V L, W 1]=$ ltrsyn(G,F,XI,THETA,RHO,W)
$[K, S V L, W 1]=l \operatorname{trsyn}(G, F, X I, T H E T A, R H O, O P T)$
$[K, S V L, W 1]=\operatorname{ltrsyn}(G, F, X I, T H E T A, R H 0, W, O P T)$

Description

$[K, S V L, W 1]=l t r s y n(G, F, X I, T H, R H O)$ computes a reconstructed-state output-feedback controller K for LTI plant G so that K^{*} G asymptotically recovers plant-input full-state feedback loop transfer function $L(s)=F(I s-A)^{-1} B+D$; that is, at any frequency $\mathrm{w}>0$, $\max (\operatorname{sigma}(\mathrm{K} * \mathrm{G}-\mathrm{L}, \mathrm{w})) \rightarrow 0$ as $\rho \rightarrow \infty$, where $L=s s(A, B, F, D)$ is the LTI full-state feedback loop transfer function.
[K,SVL,W1] = ltrsyn(G,F1, Q,R,RHO,'OUTPUT') computes the solution to the `dual' problem of filter loop recovery for LTI plant G where F is a Kalman filter gain matrix. In this case, the recovery is at the plant output, and $\max (\operatorname{sigma}(G * K-L, W)) \rightarrow 0$ as $\rho \rightarrow \infty$, where L1 denotes the LTI filter loop feedback loop transfer function $\mathrm{Ll}=\mathrm{ss}(\mathrm{A}, \mathrm{F}, \mathrm{C}, \mathrm{D})$.

Only the LTI controller K for the final value RHO (end) is returned.

Inputs	
G	LTI plant
F	LQ full-state-feedback gain matrix
XI	plant noise intensity, or, if OPT= ' OUTPUT' state-cost matrix XI=Q,
THETA	sensor noise intensity or, if OPT= ' OUTPUT' control-cost matrix THETA=R,
RHO	vector containing a set of recovery gains
W	(optional) vector of frequencies (to be used for plots); if input W is not supplied, then a reasonable default is used

Outputs	
K	K(s) - LTI LTR (loop-transfer-recovery) output-feedback, for the last element of RHO (i.e., RHO (end) $)$
SVL	sigma plot data for the recovered loop transfer function if G is MIMO or, for SISO G only, Nyquist loci SVL $=[$ re(1:nr) im(1:nr)]
W1	frequencies for SVL plots, same as W when present

Examples

```
s=tf('s');G=ss(1e4/((s+1)*(s+10)*(s+100))); [A,B,C,D]=ssdata(G);
F=lqr(A,B,C'*C,eye(size(B,2)));
L=ss(A,B,F,0*F*B);
XI=100*C'*C; THETA=eye(size(C,1));
RHO=[1e3,1e6,1e9,1e12];W=logspace(-2,2);
nyquist(L,'k-.');hold;
[K,SVL,W1]=ltrsyn(G,F,XI,THETA,RHO,W);
```

See also ltrdemo

Limitations

The ltrsyn procedure may fail for non-minimum phase plants. For full-state LTR (default OPT= ' INPUT'), the plant should not have fewer outputs than inputs. Conversely for filter LTR (when OPT= 'OUTPUT'), the plant should not have fewer inputs than outputs. The plant must be strictly proper, i.e., the D-matrix of the plant should be all zeros. ltrsyn is only for continuous time plants (Ts==0)

Algorithms

For each value in the vector RH0, [K, SVL, W1] = ltrsyn(G,F,XI, THETA, RHO) computes the full-state-feedback (default OPT=' INPUT') LTR controller

$$
K(s)=\left[K_{c}\left(I s-A+B K_{C}+K_{f} C-K_{f} D K_{C}\right)^{-1} K_{f}\right]
$$

where $K_{c}=\mathrm{F}$ and $K_{f}=\operatorname{lq}\left(\mathrm{A}^{\prime}, \mathrm{C}^{\prime}, \mathrm{XI}+\mathrm{RHO}(\mathrm{i}) * \mathrm{~B}^{\prime} \mathrm{B}^{\prime}\right.$, THETA). The "fictitious noise" term RHO (i)*B*B' results in loop-transfer recovery as RHO (i) $\rightarrow \infty$. The Kalman filter gain is $K_{f}=\sum C^{T} \Theta^{-1}$ where Σ satisfies the Kalman filter Riccati equation $0=\sum A^{T}+A \sum-\sum C^{T} \Theta^{-1} C \sum+\Xi+\rho B B^{T}$. See [1] for further details.

Similarly for the 'dual' problem of filter loop recovery case, [K, SVL, W1] =
 with $K_{f}=\mathrm{F}$ is being the input filter gain matrix and the control gain matrix K_{c} computed as $K_{c}=$ $\operatorname{lqr}\left(\mathrm{A}, \mathrm{B}, \mathrm{Q}+\mathrm{RHO}(\mathrm{i}) * \mathrm{C}^{\prime} * \mathrm{C}, \mathrm{R}\right)$.

Example of LQG/LTR at Plant Output.

References

[1] Doyle, J., and G. Stein, "Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis," IEEE Trans. on Automat. Contr., AC-26, pp. 4-16, 1981.

See Also

h2syn | hinfsyn | loopsyn | lqg | ncfsyn

Introduced before R2006a

makeweight

Weighting function with monotonic gain profile

Syntax

```
W = makeweight(dcgain,[freq,mag],hfgain)
W = makeweight(dcgain,[freq,mag],hfgain,Ts)
W = makeweight(dcgain,[freq,mag],hfgain,Ts,N)
W = makeweight(dcgain,wc,hfgain,
```

\qquad

``` )
```


Description

makeweight is a convenient way to specify loop shapes, target gain profiles, or weighting functions for applications such as controller synthesis and control system tuning.

W = makeweight(dcgain,[freq,mag],hfgain) creates a first-order, continuous-time weight $W(s)$ satisfying these constraints:

$$
\begin{gathered}
W(0)=\text { dcgain } \\
W(\text { Inf })=\text { hfgain } \\
\mid W(j \cdot \text { freq }) \mid=\text { mag. }
\end{gathered}
$$

In other words, the gain of W passes through mag at the finite frequency freq.
W = makeweight(dcgain,[freq,mag],hfgain,Ts) creates a first-order, discrete-time weight $W(z)$ satisfying these constraints:

$$
\begin{gathered}
W(1)=\text { dcgain } \\
W(-1)=\text { hfgain } \\
\left|W\left(e^{j \cdot \text { freq } \cdot \text { Ts }}\right)\right|=\text { mag. }
\end{gathered}
$$

In other words, the gain of W passes through mag at the frequency freq. The frequency freq must satisfy $0<\mathrm{freq}<\pi / \mathrm{Ts}$.
$\mathrm{W}=$ makeweight(dcgain, [freq, mag],hfgain, Ts,N) uses an Nth-order transfer function with poles and zeros in a Butterworth pattern to meet the constraints. The higher the order N , the steeper the transition from low to high gain. To create a continuous-time higher order weighting function, use $\mathrm{Ts}=0$.
$\mathrm{W}=$ makeweight(dcgain, wc, hfgain,__) specifies the gain crossover frequency wc. This syntax is equivalent to setting [freq, mag] to [wc,1]. You can use this syntax with any of the previous input-argument combinations to create a continuous-time, discrete-time, or Butterworth weighting function.

Examples

Continuous-Time Weighting Functions

Create continuous-time weighting functions by specifying the low-frequency gain, high-frequency gain, and magnitude of the gain at some intermediate frequency.

For instance, create a weighting function with a gain of 40 dB at low frequency, rolling off to -20 dB at high frequency. Specify further that the gain is about 10 dB at $1 \mathrm{rad} / \mathrm{s}$ by putting these values in a vector [freq, mag]. Specify all the gains in absolute units.

Wl = makeweight(100,[1,3.16],0.1);
Create a weighting function with a gain of -10 dB at low frequency, rising to 40 dB at high frequency. Specify a 0 dB crossover frequency of $10 \mathrm{rad} / \mathrm{s}$. To specify a 0 dB crossover frequency, you can use the crossover frequency as the second input argument instead of the vector [freq, mag].

Wh = makeweight($0.316,10,100$);
Plot the magnitudes of the weighting functions to confirm that they meet the response specifications.

```
bodemag(Wl,Wh)
```

legend
grid on

Weighting Functions with Roll-Off

Create a gain profile that rolls off at high frequency without flattening. Specify a gain of 40 dB at low frequency and a crossover frequency of $10 \mathrm{rad} / \mathrm{s}$.
$\mathrm{W}=$ makeweight(100,[10 1],0);
Specifying a high-frequency gain of 0 ensures that the frequency response rolls off at high frequencies without leveling off. Plot the gain profile to confirm this shape.
bodemag (W)
grid on

Discrete-Time Weighting Functions

Create discrete-time weighting functions by specifying the low-frequency gain, high-frequency gain, magnitude of the gain at some intermediate frequency, and sample time.

Create a weighting function with a sample time of 0.1 s . Specify a gain of 40 dB at low frequency, rolling off to -20 dB at high frequency. Specify further that the gain is about 10 dB at $0.01 \mathrm{rad} / \mathrm{s}$. Provide all gains in absolute units.

Wl = makeweight(100,[0.01,3.16],0.1,0.1);

Create a weighting function with a gain of -10 dB at low frequency, rising to 40 dB at high frequency. Specify a 0 dB crossover frequency of $2 \mathrm{rad} / \mathrm{s}$ and a sample time of 0.1 s . To specify a 0 dB crossover frequency, you can use the crossover frequency as the second input argument instead of the vector [freq,mag].

Wh = makeweight(0.316, 2, 100, 0.1);
Plot the magnitudes of the weighting functions to confirm that they meet the response specifications.

```
bodemag(Wl,Wh)
```

grid on

The high-frequency leveling of Wh is distorted due to the proximity of its crossover frequency to the Nyquist frequency.

Higher Order Weighting Functions

By default, makeweight creates first-order weighting functions. If you want a sharper transition between the low-frequency and high-frequency gains, you can specify the order with the last input argument. For instance, suppose you want to create a weighting function with a sample time of 0.1 s . The function has a gain of -10 dB at low frequency, rising to 40 dB at high frequency. Additionally, the gain passes through 6 dB at $1 \mathrm{rad} / \mathrm{s}$. For comparison, create both a third-order and a first-order function with these specifications.

```
W3 = makeweight(0.316,[1 2],100,0.1,3);
W1 = makeweight(0.316,[1 2],100,0.1);
bodemag(W3,W1)
legend('location','northwest')
grid on
```


For the first-order function, the high-frequency leveling is distorted due to the proximity of its crossover frequency to the Nyquist frequency. Using a sharper, higher-order transition ensures that the function has leveled out before reaching the Nyquist frequency.

To create continuous-time weighting functions of higher order, set Ts $=0$. For instance, create continuous-time weighting functions with the same gain specifications as W1 and W3.

```
W3c = makeweight(0.316,[1 2],100,0,3);
W1c = makeweight(0.316,[1 2],100);
bodemag(W3c,W1c)
legend('location','northwest')
grid on
```


Bode Diagram

Input Arguments

dcgain - Low-frequency gain

real scalar
Low-frequency gain of the weighting function, specified as a real scalar value. Express the gain in absolute units. For example, to specify a low-frequency gain of 20 dB , set dcgain $=10$.

The low-frequency gain, high-frequency gain, and magnitude must satisfy:

- |dcgain| > mag > |hfgain| for a low-pass weight
- |dcgain| < mag < |hfgain| for a high-pass weight

[freq,mag] - Target magnitude and corresponding frequency

two-element vector

Target magnitude and corresponding frequency, specified as a two-element vector. You specify where the gain of W transitions between the low-frequency and high-frequency values by specifying a target magnitude at a particular frequency. For instance, if you set [freq, mag] = [10, 0.1], then the magnitude of W passes through $0.1(-10 \mathrm{~dB})$ at a frequency of $10 \mathrm{rad} / \mathrm{s}$. Similarly, setting [freq, mag] $=[5,1]$ specifies a 0 dB (unit gain) crossover frequency of $5 \mathrm{rad} / \mathrm{s}$.

The low-frequency gain, high-frequency gain, and magnitude must satisfy:

- |dcgain| > mag > |hfgain| for a low-pass weight
- |dcgain| < mag < |hfgain| for a high-pass weight

hfgain - High-frequency gain

real scalar
High-frequency gain of the weighting function, specified as a real scalar value. Express the gain in absolute units. For example, to specify a high-frequency gain of -20 dB , set dcgain $=0.1$.

The low-frequency gain, high-frequency gain, and magnitude must satisfy:

- |dcgain| > mag > |hfgain| for a low-pass weight
- |dcgain| < mag < |hfgain| for a high-pass weight

Ts - Sample time

nonnegative scalar |-1
Sample time of discrete-time weighting function, specified as a nonnegative scalar value or -1. A positive value sets the sample time in seconds. The special value -1 creates a discrete-time statespace model with an unspecified sample time.

Setting Ts $=0$ creates a continuous-time weighting function. This value is useful when you want to create higher order continuous-time transfer functions using the N input argument. For an example, see "Higher Order Weighting Functions" on page 1-302.

\mathbf{N} - Order of weighting function

1 (default) | positive integer
Order of weighting function, specified as a positive integer. makeweight uses an Nth-order transfer function with poles and zeros in a Butterworth pattern to meet the specified gain constraints. The higher the order N , the steeper the transition from low to high gain.

wc - Crossover frequency

positive scalar
Crossover frequency of the weighting function in radians/second, specified as a positive scalar value. Using the input argument wc is equivalent to using [freq,mag] = [wc,1].

For discrete-time weighting functions, the crossover frequency must satisfy wc*Ts $<\pi$.

Output Arguments

W - Weighting function

state-space model
Weighting function, returned as a state-space (ss) model. For continuous-time weighting functions, the response of W satisfies the following:

$$
\begin{gathered}
W(0)=\text { dcgain } \\
W(\text { Inf })=\text { hfgain } \\
\mid W(j \cdot \text { freq }) \mid=\text { mag. }
\end{gathered}
$$

For discrete-time weighting functions, the response of W satisfies the following:

$$
\begin{gathered}
W(1)=\text { dcgain } \\
W(-1)=\text { hfgain } \\
\left|W\left(e^{j \cdot \mathrm{freq} \cdot \mathrm{Ts}}\right)\right|=\text { mag. }
\end{gathered}
$$

See Also

TuningGoal.LoopShape|augw|hinfstruct|hinfsyn|mixsyn|mkfilter|musyn

Topics

"Mixed-Sensitivity Loop Shaping"
Introduced before R2006a

matnbr

Number of matrix variables in system of LMIs

Syntax

K = matnbr(lmisys)

Description

matnbr returns the number K of matrix variables in the LMI problem described by lmisys.

See Also
 decinfo|decnbr|lmiinfo

Introduced before R2006a

mat2dec

Extract vector of decision variables from matrix variable values

Syntax

decvec $=$ mat2dec(lmisys, $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots$)

Description

Given an LMI system lmisys with matrix variables X_{1}, \ldots, X_{K} and given values $\mathrm{X} 1, \ldots, \mathrm{Xk}$ of X_{1}, \ldots, X_{K}, mat2dec returns the corresponding value decvec of the vector of decision variables. Recall that the decision variables are the independent entries of the matrices X_{1}, \ldots, X_{K} and constitute the free scalar variables in the LMI problem.

This function is useful, for example, to initialize the LMI solvers mincx or gevp. Given an initial guess for X_{1}, \ldots, X_{K}, mat2dec forms the corresponding vector of decision variables xinit.

An error occurs if the dimensions and structure of $\mathrm{X} 1, \ldots, \mathrm{Xk}$ are inconsistent with the description of X_{1}, \ldots, X_{K} in lmisys.

Examples

Consider an LMI system with two matrix variables X and Y such that

- X is a symmetric block diagonal with one 2-by-2 full block and one 2-by-2 scalar block.
- Y is a 2-by- 3 rectangular matrix.

Particular instances of X and Y are

$$
X_{0}=\left(\begin{array}{cccc}
1 & 3 & 0 & 0 \\
3 & -1 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 5
\end{array}\right), \quad Y_{0}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

and the corresponding vector of decision variables is given by

```
decv = mat2dec(lmisys,X0,Y0)
decv'
ans =
    1 [llllllllll
```

Note that decv is of length 10 since Y has 6 free entries while X has 4 independent entries due to its structure. Use decinfo to obtain more information about the decision variable distribution in X and Y.

See Also

dec2mat | decinfo|decnbr

Introduced before R2006a

mincx

Minimize linear objective under LMI constraints

Syntax

[copt,xopt] = mincx(lmisys,c,options,xinit,target)

Description

The function mincx solves the convex program
minimize $c^{T} \chi$ subject to $N^{T} L(x) N \leq M^{T} R(x) M$
where x denotes the vector of scalar decision variables.
The system of LMIs is described by lmisys. The vector c must be of the same length as x. This length corresponds to the number of decision variables returned by the function decnbr. For linear objectives expressed in terms of the matrix variables, the adequate c vector is easily derived with defcx.

The function mincx returns the global minimum copt for the objective $c^{T} x$, as well as the minimizing value xopt of the vector of decision variables. The corresponding values of the matrix variables is derived from xopt with dec2mat.

The remaining arguments are optional. The vector xinit is an initial guess of the minimizer xopt. It is ignored when infeasible, but may speed up computations otherwise. Note that xinit should be of the same length as c. As for target, it sets some target for the objective value. The code terminates as soon as this target is achieved, that is, as soon as some feasible x such that $c^{T} x \leq$ target is found. Set options to [] to use xinit and target with the default options.

Control Parameters

The optional argument options gives access to certain control parameters of the optimization code. In mincx, this is a five-entry vector organized as follows:

- options(1) sets the desired relative accuracy on the optimal value lopt (default = 10-2).
- options (2) sets the maximum number of iterations allowed to be performed by the optimization procedure (100 by default).
- options(3) sets the feasibility radius. Its purpose and usage are as for feasp.
- options (4) helps speed up termination. If set to an integer value $J>0$, the code terminates when the objective $c^{T} X$ has not decreased by more than the desired relative accuracy during the last J iterations.
- options(5) = 1 turns off the trace of execution of the optimization procedure. Resetting options (5) to zero (default value) turns it back on.

Setting option(i) to zero is equivalent to setting the corresponding control parameter to its default value. See feasp for more detail.

Tip for Speed-Up

In LMI optimization, the computational overhead per iteration mostly comes from solving a leastsquares problem of the form

$$
\min _{x}|A x-b|
$$

where x is the vector of decision variables. Two methods are used to solve this problem: Cholesky factorization of $A^{T} A$ (default), and QR factorization of A when the normal equation becomes ill conditioned (when close to the solution typically). The message

```
* switching to QR
```

is displayed when the solver has to switch to the QR mode.

Since QR factorization is incrementally more expensive in most problems, it is sometimes desirable to prevent switching to QR. This is done by setting options (4) = 1. While not guaranteed to produce the optimal value, this generally achieves a good trade-off between speed and accuracy.

Memory Problems

QR-based linear algebra (see above) is not only expensive in terms of computational overhead, but also in terms of memory requirement. As a result, the amount of memory required by QR may exceed your swap space for large problems with numerous LMI constraints. In such case, MATLAB issues the error

```
??? Error using ==> pds
Out of memory. Type HELP MEMORY for your options.
```

You should then ask your system manager to increase your swap space or, if no additional swap space is available, set options (4) = 1 . This will prevent switching to QR and mincx will terminate when Cholesky fails due to numerical instabilities.

References

The solver mincx implements Nesterov and Nemirovski's Projective Method as described in

Nesterov, Yu, and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory and Applications, SIAM, Philadelphia, 1994.

Nemirovski, A., and P. Gahinet, "The Projective Method for Solving Linear Matrix Inequalities," Proc. Amer. Contr. Conf., 1994, Baltimore, Maryland, pp. 840-844.

The optimization is performed by the C-MEX file pds.mex.

See Also

dec2mat | decnbr| defcx | feasp | gevp|mincx

Introduced before R2006a

mixsyn

Mixed-sensitivity H_{∞} synthesis method for robust control loop-shaping design

Syntax

[K,CL,gamma,info] = mixsyn(G,W1,W2,W3)
[K,CL,gamma] = mixsyn(G,W1,W2,W3,gamTry)
[K,CL,gamma] = mixsyn(G,W1,W2,W3, gamRange)
[K,CL,gamma] = mixsyn(__,opts)
[K,CL,gamma,info] = mixsyn(___)

Description

[K,CL,gamma,info] = mixsyn($\mathrm{G}, \mathrm{W} 1, \mathrm{~W} 2, \mathrm{~W} 3$) computes a controller that minimizes the H_{∞} norm of the weighted closed-loop transfer function

$$
M(s)=\left[\begin{array}{c}
W_{1} S \\
W_{2} K S \\
W_{3} T
\end{array}\right],
$$

where $S=(I+G K)^{-1}$ and $T=(I-S)$ is the complementary sensitivity of the following control system.

You choose the weighting functions W1,W2,W3 to shape the frequency responses for tracking and disturbance rejection, controller effort, and noise reduction and robustness, respectively. For details about how to choose weighting functions, see "Mixed-Sensitivity Loop Shaping".
mixsyn computes the controller K that yields the minimum $\|M(s)\|_{\infty}$, which is returned as gamma. For the returned controller K,

$$
\begin{gathered}
\|S\|_{\infty} \leq \gamma\left|W_{1}^{-1}\right| \\
\|K S\|_{\infty} \leq \gamma\left|W_{2}^{-1}\right| \\
\|T\|_{\infty} \leq \gamma\left|W_{3}^{-1}\right| .
\end{gathered}
$$

[K,CL, gamma] $=\operatorname{mixsyn}(G, W 1, W 2, W 3$, gamTry) calculates a controller for the target performance level gamTry. Specifying gamTry can be useful when the optimal controller performance is better than you need for your application. In that case, a less-than-optimal controller can have smaller gains and be better conditioned numerically. When W1, W2, W3 capture the desired limits on the gains of $S, K S$, and T, use gamtry $=1$ to just enforce those limits.

If gamTry is not achievable, mixsyn returns [] for K and $C L$, and Inf for gamma.
[K,CL, gamma] = mixsyn(G,W1,W2,W3, gamRange) searches the range gamRange for the best achievable performance. Specify the range with a vector of the form [gmin, gmax]. Limiting the search range can speed up computation by reducing the number of iterations performed by mixsyn to test different performance levels.
[K,CL,gamma] = mixsyn(__ , opts) specifies additional computation options. To create opts, use hinfsyn0ptions. Specify opts after all other input arguments.
[K,CL,gamma,info] = mixsyn (__) returns a structure containing additional information about the H_{∞} synthesis computation. You can use this argument with any of the previous syntaxes.

Examples

Loop Shaping with mixsyn

Use mixsyn for sensitivity and complementary sensitivity loop shaping. Create a plant model and weighting functions that:

- Shape the sensitivity function for reference tracking and disturbance rejection (W1 $=1 / \mathrm{S}$ large inside the control bandwidth).
- Shape the complementary sensitivity for robustness and noise attenuation (W3 = 1/T large outside the control bandwidth).
- Limit the control effort (W2 = 1/KS large inside the control bandwidth).
(For more information about choosing weighting functions, see "Mixed-Sensitivity Loop Shaping".)

```
s = zpk('s');
G = (s-1)/(s+1)^2;
W1 = makeweight(10,[1 0.1],0.01);
W2 = makeweight(0.1,[32 0.32],1);
W3 = makeweight(0.01,[1 0.1],10);
bodemag(W1,W2,W3)
```


Bode Diagram

Design the controller.

```
[K,CL,gamma] = mixsyn(G,W1,W2,W3);
```

mixsyn shapes the singular values of the sensitivity function S, the complementary sensitivity function T, and the control effort $R=K * S$. Examine the results of the synthesis and the shapes of these transfer functions.

```
S = feedback(1,G*K);
KS = K*S;
T = 1-S;
sigma(S,'b',KS,'r',T,'g',gamma/W1,'b-.',ss(gamma/W2),'r-.',gamma/W3,'g-.',{1e-3,1e3})
legend('S','KS','T','GAM/W1','GAM/W2','GAM/W3','Location','SouthWest')
grid
```


Input Arguments

G - Plant

dynamic system model
Plant, specified as a dynamic system model such as a state-space (ss) model. G can be any LTI model. mixsyn assumes the following control structure.

If G is a generalized state-space model with uncertain or tunable control design blocks, then mixsyn uses the nominal or current value of those elements.

W1, W2, W3 - Weighting functions

dynamic system model | []
Weighting functions, specified as dynamic system models. Choose the weighting functions W1, W2, W3 to shape the frequency responses for tracking and disturbance rejection, controller effort, and noise reduction and robustness. Typically:

- For good reference-tracking and disturbance-rejection performance, choose W1 large inside the control bandwidth to obtain small S.
- For robustness and noise attenuation, choose W3 large outside the control bandwidth to obtain small T.
- To limit control effort in a particular frequency band, increase the magnitude of W_{2} in this frequency band to obtain small $K S$.

If one of the weights is not needed, set it to []. For instance, if you do not want to restrict control effort, use W2 = [].

Use makeweight to create weighting functions with the desired gain profiles. For details about choosing weighting functions, see "Mixed-Sensitivity Loop Shaping".

If G has N_{U} inputs and N_{Y} outputs, then $\mathrm{W} 1, \mathrm{~W} 2, \mathrm{~W} 3$ must be either SISO or square systems of size N_{Y}, N_{U}, and N_{Y}, respectively.

Because $S+T=I$, mixsyn cannot make both S and T small (less than 0 dB) in the same frequency range. Therefore, when you specify weights for loop shaping, there must be a frequency band in which both W1 and W3 are below 0 dB .

gamTry - Target performance level

positive scalar

Target performance level, specified as a positive scalar. mixsyn attempts to compute a controller such that the H_{∞} of the weighted closed-loop system $M(s)$ does not exceed gamTry. If this performance level is achievable, then the returned controller has gamma \leq gamTry. If gamTry is not achievable, mixsyn returns an empty controller.

gamRange - Performance range for search

[0, Inf] (default) | vector of form [gmin, gmax]
Performance range for search, specified as a vector of the form [gmin, gmax]. The mixsyn command tests only performance levels within that range. It returns a controller with performance:

- gamma \leq gmin, when gmin is achievable.
- gmin < gamma < gmax, when gmax is achievable and but gmin is not.
- gamma = Inf when gmax is not achievable. In this case, mixsyn returns [] for K and CL.

If you know a range of feasible performance levels, specifying this range can speed up computation by reducing the number of iterations performed by mixsyn to test different performance levels.

opts - Options

hinfsynOptions object
Additional options for the computation, specified as an options object you create using hinfsynOptions.

Use opts to specify options for the underlying hinfsyn computation (see "Algorithms" on page 1318). Available options include:

- Display algorithm progress at the command line.
- Turn off automatic scaling and regularization.
- Specify an optimization method.

For information about all options, see hinfsynOptions.

Output Arguments

K - Controller

ss model object | []
Controller, returned as a state-space (ss) model object or [].
If you supply gamTry or gamRange and the specified performance values are not achievable, then K = [].

CL - Augmented closed-loop transfer function

ss model object | []
Augmented closed-loop transfer function, returned as a state-space (ss) model object or []. The augmented closed-loop transfer function is given by

$$
M(s)=\left[\begin{array}{c}
W_{1} S \\
W_{2} K S \\
W_{3} T
\end{array}\right],
$$

where $S=(I+G K)^{-1}$ and $T=(I-S)$ is the complementary sensitivity of the unweighted control system. See "Mixed-Sensitivity Loop Shaping".

The returned performance level gamma is the H_{∞} norm of CL .
If you supply gamTry or gamRange and the specified performance levels are not achievable, then CL = [].

gamma - Controller performance

nonnegative scalar | Inf
Controller performance, returned as a nonnegative scalar value or Inf. This value is the performance achieved using the returned controller K , and is the H_{∞} norm of CL (see hinfnorm). If you do not provide performance levels to test using gamTry or gamRange, then gamma is the best achievable performance level.

If you provide gamTry or gamRange, then gamma is the actual performance level achieved by the controller computed for the best passing performance level that hinfsyn tries. If the specified performance levels are not achievable, then gamma = Inf.

info - Synthesis data

structure | []
Additional synthesis data, returned as a structure or [] (if the specified performance level is not achievable). info contains data about the underlying hinfsyn computation used by mixsyn to
minimize the H_{∞} norm of the closed-loop transfer function $M(s)$. For details about the meaning of the fields of info, see the info output argument of hinfsyn.

Algorithms

mixsyn uses your weighting functions to generate an augmented plant $P=\operatorname{augw}(G, W 1, W 2, W 3)$. It then invokes hinfsyn to find a controller that minimizes the H_{∞} norm of the closed-loop transfer function $M(s)=L F T(P, K)$. For details, see "Mixed-Sensitivity Loop Shaping".

Compatibility Considerations

Name, Value options are not recommended

Not recommended starting in R2019b
As of R2019b, using Name, Value syntax to specify options for mixsyn is not recommended. Instead, to set a target performance range, use the gamRange input argument. For other options, create an options set with hinfsynOptions.

The following table shows how to update your calls to mixsyn to use the recommended ways of specifying options.

Not Recommended	Recommended
$\begin{aligned} & \hline \text { [K,CL,GAM] = } \\ & \operatorname{mixsyn(_ ,} \text {,'GMIN' ,gmin, 'GMAX' ,gmax) } \end{aligned}$	gamRange = [gmin gmax]; [K,CL,GAM] = mixsyn(___, gamRange)
[K,CL,GAM] = mixsyn(__, 'TOLGAM',tol)	```opts = hinfsyn0ptions('RelTol',tol); [K,CL,GAM] = mixsyn(___,opts);```
[K,CL, GAM] = mixsyn(___, 'METHOD ', meth)	$\begin{aligned} & \text { opts = hinfsyn0ptions('Method', meth); } \\ & {[\mathrm{K}, \mathrm{CL}, \mathrm{GAM}]=\operatorname{mixsyn}(\ldots \quad, \text { opts }) ;} \end{aligned}$
$\begin{aligned} & \text { [K,CL,GAM] = } \\ & \text { mixsyn(__,'DISPLAY','on') } \end{aligned}$	$\begin{aligned} & \text { opts = hinfsyn0ptions('Display', 'on'); } \\ & {[\mathrm{K}, \mathrm{CL}, \mathrm{GAM}]=\operatorname{mixsyn}(\ldots \quad \text {,opts }) ;} \end{aligned}$

For more information about these and additional options available for mixsyn computations, see hinfsynOptions.

info output argument changed

Behavior changed in R2019b
The fields of the optional output argument info changed in R2019b. The new fields of info are the same as those of hinfsyn. For more information about the change, see "info output argument changed" on page 1-229 on the hinfsyn reference page, which describes the same change for hinfsyn in R2018b.

See Also

augw | hinfsyn | hinfsyn0ptions | makeweight

Topics

"Mixed-Sensitivity Loop Shaping"
Introduced before R2006a

mkfilter

Generate Bessel, Butterworth, Chebyshev, or RC filter

Syntax

```
sys = mkfilter(fc,ord,type)
sys = mkfilter(fc,ord,type,psbndr)
```


Description

sys = mkfilter(fc,ord,type) returns a single-input, single-output analog low pass filter sys as an ss object. The cutoff frequency (Hertz) is fc and the filter order is ord, a positive integer. The argument type specifies the type of filter and can be one of the following:

type value	Description
'butterw'	Butterworth filter
'cheby'	Chebyshev filter
'bessel' '	Bessel filter
'rc'	Series of resistor/capacitor filters

The dc gain of each filter (except even-order Chebyshev) is set to unity.
sys = mkfilter(fc,ord,type, psbndr) contains the input argument psbndr that specifies the Chebyshev passband ripple (in dB). At the cutoff frequency, the magnitude is -psbndr dB. For evenorder Chebyshev filters the DC gain is also -psbndr dB.

Examples

Generate Filters

Generate several different types of filters and compare their frequency responses.

```
butw = mkfilter(2,4,'butterw');
cheb = mkfilter(4,4,'cheby',0.5);
rc = mkfilter(1,4,'rc');
bode(butw,'-',cheb,'--',rc,'-.')
legend('Butterworth','Chebyshev','RC filter')
```


Limitations

The Bessel filters are calculated using the recursive polynomial formula. This is poorly conditioned for high order filters (order > 8).

See Also
 augw

Introduced before R2006a

mktito

Partition LTI system into two-input/two-output system

Syntax

SYS=mktito(SYS,NMEAS,NCONT)

Description

SYS=mktito (SYS, NMEAS, NCONT) adds TITO (two-input/two-output) partitioning to LTI system SYS, assigning OutputGroup and InputGroup properties such that

Any preexisting OutputGroup or InputGroup properties of SYS are overwritten. TITO partitioning simplifies syntax for control synthesis functions like hinfsyn and h2syn.

Examples

You can type

```
P=rss(2,4,5); P=mktito(P,2,2);
disp(P.OutputGroup); disp(P.InputGroup);
```

to create a 4-by-5 LTI system P with OutputGroup and InputGroup properties
$\left.\left.\begin{array}{l}\text { U1: }\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] \\ \text { U2: }\left[\begin{array}{ll}4 & 5\end{array}\right] \\ \text { Y1: }\end{array}\right] \begin{array}{ll}1 & 2\end{array}\right]\left[\begin{array}{l}\text { Y2: }\end{array}\right.$

Algorithms

```
[r,c]=size(SYS);
set(SYS,'InputGroup', struct('U1',1:c-NCONT,'U2',c-NCONT+1:c));
set(SYS,'OutputGroup',struct('Y1',1:r-NMEAS,'Y2',r-NMEAS+1:r));
```


See Also

augw | h2syn | hinfsyn | sdhinfsyn

Introduced before R2006a

modreal

Modal form realization and projection

Syntax

$[G 1, G 2]=\operatorname{modreal}(G$, cut $)$

Description

[G1,G2] $=$ modreal (G, cut) returns a set of state-space LTI objects G1 and G2 in modal form given a state-space G and the model size of G1, cut.

The modal form realization has its A matrix in block diagonal form with either 1×1 or 2×2 blocks. The real eigenvalues will be put in 1×1 blocks and complex eigenvalues will be put in 2 x 2 blocks. These diagonal blocks are ordered in ascending order based on eigenvalue magnitudes.

The complex eigenvalue $\mathrm{a}+\mathrm{bj}$ is appearing as 2 x 2 block

$$
\left[\begin{array}{cl}
a & b \\
-b & a
\end{array}\right]
$$

This table describes input arguments for modreal.

Argument	Description
G	LTI model to be reduced.
cut	(Optional) an integer to split the realization. Without it, a complete modal form realization is returned

This table lists output arguments.

Argument	Description
G1,G2	LTI models in modal form

G can be stable or unstable. $G_{1}=\left(A_{1}, B_{1}, C_{1}, D_{1}\right), G_{2}=\left(A_{2}, B_{2}, C_{2}, D_{2}\right)$ and $D_{1}=D+C_{2}\left(-A_{2}\right)^{-1} B_{2}$ is calculated such that the system DC gain is preserved.

Examples

Given a continuous stable or unstable system, G, the following commands can get a set of modal form realizations depending on the split index -- cut:

```
rng(1234,'twister');
G = rss(50,2,2);
[G1,G2] = modreal(G,2); % cut = 2 for two rigid body modes
G1.D = zeros(2,2); % remove the DC gain of the system from G1
sigma(G,G1,G2)
```


Algorithms

Using a real eigen structure decomposition reig and ordering the eigenvectors in ascending order according to their eigenvalue magnitudes, we can form a similarity transformation out of these ordered real eigenvectors such that he resulting systems G1 and/or G2 are in block diagonal modal form.

Note This routine is extremely useful when model has $\mathrm{j} \omega$-axis singularities, e.g., rigid body dynamics. It has been incorporated inside Hankel based model reduction routines - hankelmr, balancmr, bstmr, and schurmr to isolate those $\mathrm{j} \omega$-axis poles from the actual model reduction process.

See Also

balancmr|bstmr|hankelmr|hankelsv|ncfmr|reduce|schurmr
Introduced before R2006a

msfsyn

Multi-model/multi-objective state-feedback synthesis

Syntax

```
[gopt,h2opt,K,Pcl,X] = msfsyn(P,r,obj,region,tol)
```


Description

Given an LTI plant P with state-space equations

$$
\left\{\begin{array}{c}
\dot{x}=A x+B_{1} w+B_{2} u \\
z_{\infty}=C_{1} x+D_{11} w+D_{12} u \\
z_{2}=C_{2} x+D_{22} u
\end{array}\right.
$$

msfsyn computes a state-feedback control $u=K x$ that

- Maintains the RMS gain (H_{∞} norm) of the closed-loop transfer function T_{∞} from w to z_{∞} below some prescribed value $\gamma_{0}>0$
- Maintains the H_{2} norm of the closed-loop transfer function T_{2} from w to z_{2} below some prescribed value $\mathrm{v}_{0}>0$
- Minimizes an H_{2} / H_{∞} trade-off criterion of the form

$$
\alpha\left\|T_{\infty}\right\|_{\infty}^{2}+\beta\left\|T_{2}\right\|_{2}^{2}
$$

- Places the closed-loop poles inside the LMI region specified by region (see lmireg for the specification of such regions). The default is the open left-half plane.

Set $r=\operatorname{size}(\mathrm{d} 22)$ and obj $=\left[\gamma_{0}, \nu_{0}, \alpha, \beta\right]$ to specify the problem dimensions and the design parameters $\gamma_{0}, \nu_{0}, \alpha$, and β. You can perform pure pole placement by setting obj $=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$. Note also that z_{∞} or z_{2} can be empty.

On output, gopt and h2opt are the guaranteed H_{∞} and H_{2} performances, K is the optimal statefeedback gain, Pcl the closed-loop transfer function from w to $\binom{z_{\infty}}{z_{2}}$, and X the corresponding Lyapunov matrix.
The function msfsyn is also applicable to multi-model problems where P is a polytopic model of the plant:

$$
\left\{\begin{array}{c}
\dot{x}=A(t) x+B_{1}(t) w+B_{2}(t) u \\
z_{\infty}=C_{1}(t) x+D_{11}(t) w+D_{12}(t) u \\
z_{2}=C_{2}(t) x+D_{22}(t) u
\end{array}\right.
$$

with time-varying state-space matrices ranging in the polytope

$$
\left(\begin{array}{ccc}
A(t) & B_{1}(t) & B_{2}(t) \\
C_{1}(t) & D_{11}(t) & D_{12}(t) \\
C_{2}(t) & 0 & D_{22}(t)
\end{array}\right) \in \operatorname{Co}\left\{\left(\begin{array}{ccc}
A_{k} & B_{k} & C_{k} \\
C_{1 k} & D_{11 k} & D_{12 k} \\
C_{2 k} & 0 & D_{22 k}
\end{array}\right): k=1, \ldots, K\right\}
$$

In this context, msfsyn seeks a state-feedback gain that robustly enforces the specifications over the entire polytope of plants. Note that polytopic plants should be defined with psys and that the closedloop system Pcl is itself polytopic in such problems. Affine parameter-dependent plants are also accepted and automatically converted to polytopic models.

See Also
 lmireg|psys

Introduced before R2006a

mussv

Compute bounds on structured singular value (μ)

Syntax

```
bounds = mussv(M,BlockStructure)
[bounds,muinfo] = mussv(M,BlockStructure)
[bounds,muinfo] = mussv(M,BlockStructure,Options)
[ubound,q] = mussv(M,F,BlockStructure)
[ubound,q] = mussv(M,F,BlockStructure,'s')
```


Description

bounds = mussv($\mathrm{M}, \mathrm{BlockStructure)} \mathrm{calculates} \mathrm{upper} \mathrm{and} \mathrm{lower} \mathrm{bounds} \mathrm{on} \mathrm{the} \mathrm{structured}$ singular value, or μ, for a given block structure. M is a double array, an frd model, or a state-space (ss) model.

- If M is an N -D array (with $\mathrm{N} \geq 3$), then the computation is performed pointwise along the third and higher array dimensions.
- If M is a frd model, then the computations are performed pointwise in frequency (as well as any array dimensions).
- If M is a ss model, the computations are performed using state-space algorithms. Frequencies are adaptively selected, and upper bounds are guaranteed to hold over each interval between frequencies. M must be a single system, without array dimensions.

BlockStructure is a matrix specifying the perturbation block structure. BlockStructure has 2 columns, and as many rows as uncertainty blocks in the perturbation structure. The i-th row of BlockStructure defines the dimensions of the i'th perturbation block.

- If BlockStructure(i,:) = [-r 0], then the i-th block is an r-by-r repeated, diagonal real scalar perturbation;
- if BlockStructure (i,:) = [r 0] , then the i-th block is an r-by-r repeated, diagonal complex scalar perturbation;
- if BlockStructure(i,:) = [r c], then the i-th block is an r-by-c complex full-block perturbation.
- If BlockStructure is omitted, its default is ones $(\operatorname{size}(M, 1), 2)$, which implies a perturbation structure of all 1-by-1 complex blocks. In this case, if size $(M, 1)$ does not equal size ($M, 2$), an error results.

If M is a two-dimensional matrix, then bounds is a 1-by-2 array containing an upper (first column) and lower (second column) bound of the structured singular value of M . For all matrices Delta with block-diagonal structure defined by BlockStructure and with norm less than 1/bounds(1) (upper bound), the matrix I - M*Delta is not singular. Moreover, there is a matrix DeltaS with blockdiagonal structure defined by BlockStructure and with norm equal to $1 /$ bounds (2) (lower bound), for which the matrix I - M*DeltaS is singular.

The format used in the 3rd output argument from lftdata is also acceptable for describing the block structure.

If M is an frd , the computations are always performed pointwise in frequency. The output argument bounds is a 1-by-2 frd of upper and lower bounds at each frequency. Note that bounds. Frequency equals M. Frequency.

If M is an $N-D$ array (either double or $f r d$), the upper and lower bounds are computed pointwise along the 3rd and higher array dimensions (as well as pointwise in frequency, for frd). For example, suppose that size(M) is $r \times c \times d_{1} \times \ldots \times d_{F}$. Then size(bounds) is $1 \times 2 \times d_{1} \times \ldots \times d_{F}$. Using single index notation, bounds ($1,1, i$) is the upper bound for the structured singular value of $M(:,:, i)$, and bounds ($1,2, i$) is the lower bound for the structured singular value of $\mathrm{M}(:,:, i)$. Here, any i between 1 and $d_{1} \cdot d_{2} \ldots d_{F}$ (the product of the d_{k}) would be valid.

If M is a ss model, bounds is returned as an frd model.
bounds = mussv(M,BlockStructure,Options) specifies computation options. Options is a character vector, containing any combination of the following characters:

Option	Meaning
'a'	Upper bound to greatest accuracy, using LMI solver. This is the default behavior when the number of decision variables within the D/G scalings is less than 45.
'f'	Force fast upper bound (typically not as tight as the default)
'G'	Force upper bound to use gradient method. This is the default behavior when the number of decision variables within the D/G scalings is greater than or equal to 45 .
'U'	Upper-bound "only" (lower bound uses a fast/cheap algorithm).
'gN'	Use gain-based lower bound method multiple times. The value of N sets the number of times, according to $10+N^{*} 10$. For example, ' g 6 ' uses gain-based lower bound 70 times. Larger numbers typically give better lower bounds. If all uncertainty blocks described by blk are real, then the default is ' g 1 '. If at least one uncertainty block is complex, then mussv uses power iteration lower bound by default.
'i'	Reinitialize lower bound computation at each new matrix (only relevant if M is ND array or frd).
'mN'	Randomly reinitialize lower bound iteration multiple times. N is an integer between 1 and 9 . For example, ' m7' randomly reinitializes the lower bound iteration 7 times. Larger numbers are typically more computationally expensive, but often give better lower bounds.
'p'	Use power iteration method to compute lower bound. When at least one of the uncertainty blocks described by BlockStructure is complex, then ' p ' is the default lower bound method.
's'	Suppress progress information (silent).
'd'	Display warnings.
'x'	Decrease iterations in lower bound computation (faster but not as tight as default). Use ' U ' for an even faster lower bound.

Option	Meaning
'an'	Same as 'a' , but without automatic prescaling.
'o'	Run "old" algorithms, from version 3.1.1 and before. Included to allow exact replication of earlier calculations.

[bounds,muinfo] = mussv($\mathrm{M}, \mathrm{BlockStructure)} \mathrm{returns} \mathrm{muinfo}$, detailed information. The information within muinfo must be extracted using mussvextract.

Generalized Structured Singular Value

ubound $=$ mussv($\mathrm{M}, \mathrm{F}, \mathrm{BlockStructure}$) calculates an upper bound on the generalized structured singular value (generalized μ) for a given block structure. M is a double or frd object. M and BlockStructure are as before. F is an additional (double or $f r d$).
ubound $=$ mussv(M,F,BlockStructure,'s') adds an option to run silently. Other options are ignored for generalized μ problems.

Note that in generalized structured singular value computations, only an upper bound is calculated. ubound is an upper bound of the generalized structured singular value of the pair (M, F), with respect to the block-diagonal uncertainty described by BlockStructure. Consequently ubound is 1 -by-1 (with additional array dependence, depending on M and F). For all matrices Delta with blockdiagonal structure defined by BlockStructure and norm<1/ubound, the matrix [I-Delta*M;F] is guaranteed not to lose column rank. This is verified by the matrix Q, which satisfies mussv (M +Q*F,BlockStructure,'a')<=ubound.

Examples

See mussvextract for a detailed example of the structured singular value.
A simple example for generalized structured singular value can be done with random complex matrices, illustrating the relationship between the upper bound for μ and generalized μ, as well as the fact that the upper bound for generalized μ comes from an optimized μ upper bound.

M is a complex 5-by-5 matrix and F is a complex 2-by-5 matrix. The block structure BlockStructure is an uncertain real parameter δ_{1}, an uncertain real parameter δ_{2}, an uncertain complex parameter δ_{3} and a twice-repeated uncertain complex parameter δ_{4}.

```
rng(929,'twister')
M = randn(5,5) + sqrt(-1)*randn(5,5);
F = randn(2,5) + sqrt(-1)*randn(2,5);
BlockStructure = [-1 0;-1 0;1 1;2 0];
[ubound,Q] = mussv(M,F,BlockStructure);
bounds = mussv(M,BlockStructure);
optbounds = mussv(M+Q*F,BlockStructure);
```

The quantities optbounds(1) and ubound should be extremely close, and significantly lower than bounds(1) and bounds(2).
[optbounds(1) ubound]
ans $=$

Algorithms

The lower bound is computed using a power method, Young and Doyle, 1990, and Packard et al. 1988, and the upper bound is computed using the balanced/AMI technique, Young et al., 1992, for computing the upper bound from Fan et al., 1991.

Peter Young and Matt Newlin wrote the original function.
The lower-bound power algorithm is from Young and Doyle, 1990, and Packard et al. 1988.
The upper-bound is an implementation of the bound from Fan et al., 1991, and is described in detail in Young et al., 1992. In the upper bound computation, the matrix is first balanced using either a variation of Osborne's method (Osborne, 1960) generalized to handle repeated scalar and full blocks, or a Perron approach. This generates the standard upper bound for the associated complex μ problem. The Perron eigenvector method is based on an idea of Safonov, (Safonov, 1982). It gives the exact computation of μ for positive matrices with scalar blocks, but is comparable to Osborne on general matrices. Both the Perron and Osborne methods have been modified to handle repeated scalar and full blocks. Perron is faster for small matrices but has a growth rate of n^{3}, compared with less than n^{2} for Osborne. This is partly due to the MATLAB implementation, which greatly favors Perron. The default is to use Perron for simple block structures and Osborne for more complicated block structures. A sequence of improvements to the upper bound is then made based on various equivalent forms of the upper bound. A number of descent techniques are used that exploit the structure of the problem, concluding with general purpose LMI optimization (Boyd et al.), 1993, to obtain the final answer.

The optimal choice of Q (to minimize the upper bound) in the generalized μ problem is solved by reformulating the optimization into a semidefinite program (Packard et al., 1991).

References

[1] Boyd, S. and L. El Ghaoui, "Methods of centers for minimizing generalized eigenvalues," Linear Algebra and Its Applications, Vol. 188-189, 1993, pp. 63-111.
[2] Fan, M., A. Tits, and J. Doyle, "Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics," IEEE Transactions on Automatic Control, Vol. AC-36, 1991, pp. 25-38.
[3] Osborne, E., "On preconditioning of matrices," Journal of Associated Computer Machines, Vol. 7, 1960, pp. 338-345.
[4] Packard, A.K., M. Fan and J. Doyle, "A power method for the structured singular value," Proc. of 1988 IEEE Conference on Control and Decision, December 1988, pp. 2132-2137.
[5] Safonov, M., "Stability margins for diagonally perturbed multivariable feedback systems," IEEE Proc., Vol. 129, Part D, 1992, pp. 251-256.
[6] Young, P. and J. Doyle, "Computation of with real and complex uncertainties," Proceedings of the 29th IEEE Conference on Decision and Control, 1990, pp. 1230-1235.
[7] Young, P., M. Newlin, and J. Doyle, "Practical computation of the mixed problem," Proceedings of the American Control Conference, 1992, pp. 2190-2194.

See Also

mussvextract|robgain| robstab|wcdiskmargin|wcgain
Introduced before R2006a

mussvextract

Extract muinfo structure returned by mussv

Syntax

[VDelta,VSigma,VLmi] = mussvextract(muinfo)

Description

A structured singular value computation of the form
[bounds,muinfo] = mussv(M,BlockStructure)
returns detailed information in the structure muinfo. mussvextract is used to extract the compressed information within muinfo into a readable form.

The most general call to mussvextract extracts three usable quantities: VDelta, VSigma, and VLmi. VDelta is used to verify the lower bound. VSigma is used to verify the Newlin/Young upper bound and has fields DLeft, DRight, GLeft, GMiddle, and GRight. VLmi is used to verify the LMI upper bound and has fields Dr, Dc, Grc, and Gcr. The relation/interpretation of these quantities with the numerical results in bounds is described below.

Upper Bound Information

The upper bound is based on a proof that $\operatorname{det}(\mathrm{I}-\mathrm{M} * \operatorname{Delta}$) is nonzero for all block-structured matrices Delta with norm smaller than 1/bounds (1). The Newlin/Young method consists of finding a scalar β and matrices D and G, consistent with BlockStructure, such that

$$
\bar{\sigma}\left(\left(I+G_{L}^{2}\right)^{-\frac{1}{4}}\left(\frac{D_{L} M D_{R}^{-1}}{\beta}-j G_{M}\right)\left(I+G_{R}^{2}\right)^{-\frac{1}{4}}\right) \leq 1
$$

Here $D_{L}, D_{R}, G_{L}, G_{M}$, and G_{R} correspond to the DLeft, DRight, GLeft, GMiddle, and GRight fields respectively.

Because some uncertainty blocks and M need not be square, the matrices D and G have a few different manifestations. In fact, in the formula above, there are a left and right D and G, as well as a middle G. Any such β is an upper bound of mussv($\mathrm{M}, \mathrm{BlockStructure)}$.

It is true that if BlockStructure consists only of complex blocks, then all G matrices will be zero, and the expression above simplifies to

$$
\bar{\sigma}\left(D_{L} M D_{R}^{-1}\right) \leq \beta .
$$

The LMI method consists of finding a scalar β and matrices D and G, consistent with BlockStructure, such that

$$
M^{\prime} D_{r} M-\beta^{2} D_{c}+j\left(G_{c r} M-M^{\prime} G_{r c}\right) \leq 0
$$

is negative semidefinite. Again, D and G have a few different manifestations to match the row and column dimensions of M. Any such β is an upper bound of mussv ($M, B l o c k S t r u c t u r e$). If

BlockStructure consists only of complex blocks, then all G matrices will be zero, and negative semidefiniteness of $M^{\prime} D_{r} M-\beta^{2} D_{c}$ is sufficient to derive an upper bound.

Lower Bound Information

The lower bound of mussv ($\mathrm{M}, \mathrm{BlockStructure} \mathrm{)} \mathrm{is} \mathrm{based} \mathrm{on} \mathrm{finding} \mathrm{a} \mathrm{"small"} \mathrm{(hopefully} \mathrm{the}$ smallest) block-structured matrix VDelta that causes det (I - M*VDelta) to equal 0. Equivalently, the matrix M*VDelta has an eigenvalue equal to 1 . It will always be true that the lower bound (bounds(2)) will be the reciprocal of norm(VDelta).

Examples

Suppose M is a 4 -by- 4 complex matrix. Take the block structure to be two 1-by-1 complex blocks and one 2-by-2 complex block.

```
rng(0,'twister')
M = randn(4,4) + sqrt(-1)*randn(4,4);
BlockStructure = [1 1;1 1;2 2];
```

You can calculate bounds on the structured singular value using the mussv command and extract the scaling matrices using mussvextract.

```
[bounds,muinfo] = mussv(M,BlockStructure);
[VDelta,VSigma,VLmi] = mussvextract(muinfo);
```

You can first verify the Newlin/Young upper bound with the information extracted from muinfo. The corresponding scalings are Dl and Dr .

```
Dl = VSigma.DLeft
Dl =
\begin{tabular}{rrrr}
1.0000 & 0 & 0 & 0 \\
0 & 0.7437 & 0 & 0 \\
0 & 0 & 1.0393 & 0 \\
0 & 0 & 0 & 1.0393
\end{tabular}
Dr = VSigma.DRight
Dr =
\begin{tabular}{rrrr}
1.0000 & 0 & 0 & 0 \\
0 & 0.7437 & 0 & 0 \\
0 & 0 & 1.0393 & 0 \\
0 & 0 & 0 & 1.0393
\end{tabular}
[norm(Dl*M/Dr) bounds(1)]
ans =
    6.2950 6.2950
```

You can first verify the LMI upper bound with the information extracted from muinfo. The corresponding scalings are Dr and Dc .

```
Dr = VLmi.Dr;
Dc = VLmi.Dc;
eig(M'*Dr*M - bounds(1)^2*Dc)
ans =
    -0.0000 - 0.0000i
    -17.7242 - 0.0000i
    -33.8550 + 0.0000i
    -41.2013 - 0.0000i
```

Note that VDelta matches the structure defined by BlockStructure, and the norm of VDelta agrees with the lower bound,

```
VDelta
```

VDelta =

$0.1301-0.0922 i$	0	0	0
0	$-0.0121-0.1590 i$	0	0
0	0	$-0.0496-0.0708 i$	$0.1272-0.0075 i$
0	0	$0.0166-0.0163 i$	$0.0076+0.0334 i$

[norm(VDelta) 1/bounds(2)]
ans =

$$
0.1595 \quad 0.1595
$$

and that M^{*} VDelta has an eigenvalue exactly at 1.

```
eig(M*VDelta)
ans =
    1.0000 - 0.0000i
    -0.2501 - 0.1109i
    0.0000 + 0.0000i
    -0.3022 + 0.2535i
```

Keep the matrix the same, but change BlockStructure to be a 2-by-2 repeated, real scalar block and two complex 1-by-1 blocks. Run mussv with the ' C ' option to tighten the upper bound.

```
BlockStructure2 = [-2 0; 1 0; 1 0];
[bounds2,muinfo2] = mussv(M,BlockStructure2,'C');
```

You can compare the computed bounds. Note that bounds2 should be smaller than bounds, because the uncertainty set defined by BlockStructure2 is a proper subset of that defined by BlockStructure.
[bounds; bounds2]
ans =

$$
6.2950 \quad 6.2704
$$

$$
5.1840 \quad 5.1750
$$

You can extract the D, G and Delta from muinfo 2 using mussvextract.

```
[VDelta2,VSigma2,VLmi2] = mussvextract(muinfo2);
```

As before, you can first verify the Newlin/Young upper bound with the information extracted from muinfo. The corresponding scalings are $\mathrm{Dl}, \mathrm{Dr}, \mathrm{Gl}, \mathrm{Gm}$ and Gr .

```
Dl = VSigma2.DLeft;
Dr = VSigma2.DRight;
Gl = VSigma2.GLeft;
Gm = VSigma2.GMiddle;
Gr = VSigma2.GRight;
dmd = Dl*M/Dr/bounds2(1) - sqrt(-1)*Gm;
SL = (eye(4)+Gl*Gl)^-0.25;
SR = (eye(4)+Gr*Gr)^-0.25;
norm(SL*dmd*SR)
ans =
    1.0000
```

You can first verify the LMI upper bound with the information extracted from muinfo. The corresponding scalings are Dr, Dc, Grc and Gcr.

```
Dr = VLmi2.Dr;
Dc = VLmi2.Dc;
Grc = VLmi2.Grc;
Gcr = VLmi2.Gcr;
eig(M'*Dr*M - bounds(1)^2 *Dc + j*(Gcr*M-M'*Grc))
ans =
```

 \(-69.9757+0.0000 i\)
 -11.2139 - 0.0000i
 -19.2766-0.0000i
 -40.2869-0.0000i
 VDelta2 matches the structure defined by BlockStructure, and the norm of VDelta2 agrees with the lower bound,

```
VDelta2
VDelta2 =
    0.1932
        0
                                0
                                -0.1781-0.0750i
                                0
            0 0.1932
            0 0
                0
                                    0
                            0
                                    0.0941 + 0.1688i
[norm(VDelta2) 1/bounds2(2)]
ans =
    0.1932 0.1932
```

and that $\mathrm{M} * \mathrm{VDelta} 2$ has an eigenvalue exactly at 1.
eig(M*VDelta2)
ans $=$
$1.0000+0.0000 i$

$$
\begin{array}{r}
-0.4328+0.1586 i \\
0.1220-0.2648 i \\
-0.3688-0.3219 i
\end{array}
$$

See Also

mussv

Introduced before R2006a

musyn

Robust controller design using mu synthesis

Syntax

```
[K,CLperf] = musyn(P,nmeas,ncont)
[K,CLperf,info] = musyn(P,nmeas,ncont)
[K,CLperf,info] = musyn(P,nmeas,ncont,Kinit)
[K,CLperf,info] = musyn(
```

\qquad

``` ,opts)
[CL,CLperf] = musyn(CL0)
[CL,CLperf,info] = musyn(CL0)
[CL,CLperf,info] = musyn(CL0,blockvals)
[CL,CLperf,info] = musyn(
``` \(\qquad\)
``` ,opts)
[CL,CLperf,info,runs] = musyn(
``` \(\qquad\)
``` ,opts)
```


Description

musyn designs a robust controller for an uncertain plant using D-K iteration, which combines H_{∞} synthesis (K step) with μ analysis (D step) to optimize closed-loop robust performance.

You can use musyn to:

- Synthesize "black box" unstructured robust controllers.
- Robustly tune a fixed-order or fixed-structure controller made up of tunable components such as PID controllers, state-space models, and static gains.

For additional information about performing μ synthesis and interpreting results, see "Robust Controller Design Using Mu Synthesis".

Full-Order Centralized Controllers

[$\mathrm{K}, \mathrm{CLperf}$] = musyn (P , nmeas, ncont) returns a controller K that optimizes the robust performance of the uncertain closed-loop system $C L=l f t(P, K)$. The plant P is a continuous or discrete uncertain plant with the partitioned form

$$
\left[\begin{array}{l}
z \\
y
\end{array}\right]=\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]\left[\begin{array}{l}
w \\
u
\end{array}\right],
$$

where:

- w represents the disturbance inputs.
- u represents the control inputs.
- z represents the error outputs to be kept small.
- y represents the measurement outputs provided to the controller.
nmeas and ncont are the numbers of signals in y and u, respectively. y and u are the last outputs and inputs of P, respectively. The closed-loop system $C L=l f t(P, K)$ achieves the robust performance CLperf, which is the μ upper bound, the robust performance metric calculated by musynperf.

For this syntax, musyn uses hinfsyn for H_{∞} synthesis (the K step).
[K,CLperf,info] = musyn($\mathrm{P}, \mathrm{nmeas}, \mathrm{ncont}$) returns additional information about each D-K iteration.
[K,CLperf,info] = musyn ($\mathrm{P}, \mathrm{nmeas}$, ncont, Kinit $)$ initializes the $\mathrm{D}-\mathrm{K}$ iteration process with the controller Kinit. To restart D-K iteration using the results of the j th iteration from a previous run, use Kinit = info(j).K.
[K,CLperf,info] = musyn (__ , opts) uses additional options for the D-K iteration and underlying hinfsyn computations. Use musynOptions to create the option set. You can use this syntax with any of the previous input and output argument combinations.

Fixed-Structure Controllers

[CL,CLperf] = musyn(CL0) optimizes the robust performance by tuning the free parameters in the tunable, uncertain closed-loop model CL0. The genss model CL0 is an uncertain and tunable model of the closed-loop system whose robust performance you want to optimize. The model contains:

- Uncertain control design blocks such as ureal and ultidyn to represent the uncertainty
- Tunable control design blocks such as tunablePID, tunableSS, and tunableGain to represent the tunable components of the control structure
musyn returns the closed-loop model CL with the tunable control design blocks set to the tuned values. The best achieved robust performance is returned as CLperf.

For this syntax, musyn uses hinfstruct for H_{∞} synthesis (K step).
[CL,CLperf,info] = musyn(CL0) also returns additional information about each D-K iteration.
[CL,CLperf,info] = musyn(CL0,blockvals) initializes the D-K iteration with the tunable block values in blockvals. You can specify the block values as a structure or by providing a closed-loop model whose blocks are tuned to the values you want to initialize. For instance, to use the tuned values obtained in a previous musyn run, set blockvalues $=C L$.
[CL,CLperf,info] = musyn(__ , opts) uses additional options for the D-K iteration and underlying hinfstruct computations. Use musynOptions to create the option set. You can use this syntax with any of the previous input and output argument combinations.
[CL,CLperf,info,runs] = musyn(__ , opts) also returns details about each independent tuning run when you use the 'RandomStart ' option of musynOptions to perform additional randomized runs.

Examples

Unstructured Robust Controller Synthesis

Synthesize a stabilizing robust controller K for the system in the following illustration, where the plant G includes some dynamic uncertainty. The controller must also reject disturbances injected at the plant output.

The nominal plant model G0 is an unstable first-order system.
G0 = tf(1,[1-1]);
The uncertainty in G0 is as follows:

- At low frequency, below $2 \mathrm{rad} / \mathrm{s}$, the plant can vary up to 25% from its nominal value.
- Around $2 \mathrm{rad} / \mathrm{s}$, the percentage variation starts to increase, reaching 400% at approximately 32 rad/s.

Represent the frequency-dependent model uncertainty with the weight Wu and the uncertain LTI dynamic uncertainty InputUnc, an ultidyn control design block.

```
Wu = 0.25*tf([1/2 1],[1/32 1]);
InputUnc = ultidyn('InputUnc',[1 1]);
G = G0*(1+InputUnc*Wu);
```

musyn seeks a controller that optimizes robust performance from inputs to outputs. To set up this problem for musyn, then, insert a weighting function Wp that captures the disturbance rejection goal.

When you provide this augmented plant P to musyn, the function designs a controller that drives the transfer function from d to e below 1 at all frequencies. That transfer function is Wp / S, where $\mathrm{S}=1$ - GK is the sensitivity function. Thus, choose Wp to be the inverse of the desired sensitivity. For this example, choose Wp with:

- Low-frequency gain of 100 (40 dB)
- 0 dB crossover at $0.5 \mathrm{rad} / \mathrm{s}$
- High-frequency gain of 0.25 (-12 dB)

```
Wp = makeweight(100,[1 0.5],0.25);
```

bodemag (Wp)

Bode Diagram

You can now construct the plant as shown in the block diagram by naming the signals, defining a sum block, and using connect. Construct the plant so that the control input is the last input, and the measurement output is the last output.

```
G.InputName = 'u';
G.OutputName = 'y1';
Wp.InputName = 'y';
Wp.OutputName = 'e';
SumD = sumblk('y = y1 + d');
inputs = {'d','u'};
outputs = {'e','y'};
P = connect(G,Wp,SumD,inputs,outputs);
```

Use musyn to design a controller K for this uncertain system.

```
nmeas = 1;
ncont = 1;
[K,CLperf,info] = musyn(P,nmeas,ncont);
D-K ITERATION SUMMARY:
--------------------------------------------------------------------
                                    Robust performance
    Iter K Step Peak MU D Fit D
```

1	1.345	1.344	1.36	8
2	0.7923	0.7904	0.7961	4
3	0.6789	0.6789	0.6857	10
4	0.6572	0.6572	0.6598	8
5	0.6538	0.6538	0.6542	8
6	0.6532	0.6532	0.6533	8

Best achieved robust performance: 0.653
The display shows that the best achieved robust performance is about 0.65 . This result means that the gain from d to e remains below 0.65 for up to $1 / 0.65$ times the uncertainty specified in the plant. Thus, the controller achieves the robust performance objectives for the full range of modeled uncertainty. (For more information on interpreting musyn results, see "Robust Controller Design Using Mu Synthesis".)

You can examine the robust performance using analysis commands such as robgain and wcgainplot. For instance, examine the worst-case gain of the closed-loop system.

```
CL = lft(P,K);
wCg = wcgain(CL)
wcg = struct with fields:
    LowerBound: 0.5283
    UpperBound: 0.5294
    CriticalFrequency: 0
```

This result confirms that the actual worst-case gain over the modeled uncertainty is about 0.53, which is within the robust performance of 0.65 guaranteed by musyn.

For this problem, the controller returned by musyn is fairly high order.

```
size(K)
```

State-space model with 1 outputs, 1 inputs, and 11 states.
You can try reducing the controller order with model-reduction commands such as bal red or reduce to see whether you can maintain robust performance. (For an example, see the musynperf reference page.) Or, you can try specifying a lower order controller structure and use musyn to tune it. See "Robust Tuning of Fixed-Structure Controller" on page 1-341.

Robust Tuning of Fixed-Structure Controller

Tune a fixed-structure controller for the control system in "Unstructured Robust Controller Synthesis" on page 1-338, which shows how to use musyn to design an unstructured full-order centralized controller, and returns a controller of order 11. For this example, use the same control structure, as shown in the diagram, but restrict the structure of K to a fifth-order state-space model.

First, construct the same plant P as in "Unstructured Robust Controller Synthesis" on page 1-338. The plant is an uncertain plant G augmented by a sensitivity-weighting function Wp.

```
G0 = tf(1,[1 -1]);
Wu = 0.25*tf([1/2 1],[1/32 1]);
InputUnc = ultidyn('InputUnc',[1 1]);
G = G0*(1+InputUnc*Wu);
G.InputName = 'u';
G.OutputName = 'y1';
Wp = makeweight(100,[1 0.5],0.25);
Wp.InputName = 'y';
Wp.OutputName = 'e';
SumD = sumblk('y = yl + d');
inputs = {'d','u'};
outputs = {'e','y'};
P = connect(G,Wp,SumD,inputs,outputs);
```

Create a tunableSS control design block to represent the fixed controller structure, a fifth-order state-space model.

```
C0 = tunableSS('K',5,1,1);
```

Form the closed-loop system, which is a generalized state-space (genss) model that has both a tunable block and a uncertain block.

```
CL0 = lft(P,C0)
CL0 =
    Generalized continuous-time state-space model with 1 outputs, 1 inputs, 8 states, and the folld
        InputUnc: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
        K: Parametric 1x1 state-space model, 5 states, 1 occurrences.
Type "ss(CL0)" to see the current value, "get(CL0)" to see all properties, and "CL0.Blocks" to i
```

Use musyn to tune the free entries of the controller.
[CL,CLperf,info] = musyn(CL0);
D-K ITERATION SUMMARY:

Iter	K Step	Peak MU	D Fit	D
1	1.342	1.341	1.356	10
2	0.797	0.7872	0.7923	6
3	0.6835	0.6697	0.676	8
4	0.6626	0.657	0.6637	6
5	0.6605	0.6559	0.6602	6
6	0.6596	0.6541	0.6597	6

Best achieved robust performance: 0.654
Even when you specify the structure of K as a fifth-order state-space model, musyn can find tuned parameter values that yield very similar robust performance to the 11th-order controller. You can try still lower controller orders to see whether the robust stability is preserved.

Design Robust Controller With Specified Gain and Phase Margins

The robust controller returned by musyn optimizes robust performance of uncertain feedback systems. When the uncertain plant contains umargin blocks, this requirement of robust stability is equivalent to enforcing disk-based gain and phase margins equal to the umargin uncertainty. In this example, design a robust controller for an uncertain plant, enforcing closed-loop stability against gain and phase variations at the plant inputs and outputs.

Use the plant from the example "Loop Shaping with mixsyn" on the mixsyn reference page, introducing some uncertainty in the location of the system poles and zero.

```
a = ureal('a',1,'PlusMinus',[-0.1,0.1]);
s = zpk('s');
G = (s-a)/(s+a)^2;
```

The goal is to enforce closed-loop stability against gain and phase variation at the plant inputs and outputs, over the full range of parameter variation modeled in the plant G. To do so, use the target gain and phase margins to create umargin uncertain blocks and attach them to the plant. For this example, suppose that you want stability against gain variations of a factor of 1.5 in either direction, or phase variations of $\pm 20^{\circ}$.

```
DGM = getDGM(1.5,20,'tight');
Fin = umargin('Fin',DGM);
Fout = umargin('Fout',DGM);
Gmarg = Fout*G*Fin
Gmarg =
    Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 7 states.
    The model uncertainty consists of the following blocks:
        Fin: Uncertain gain/phase, gain x [0.667,1.5], phase \pm 22.6 deg, 1 occurrences
        Fout: Uncertain gain/phase, gain x [0.667,1.5], phase \pm 22.6 deg, 1 occurrences
        a: Uncertain real, nominal = 1, variability = [-0.1,0.1], 3 occurrences
Type "Gmarg.NominalValue" to see the nominal value, "get(Gmarg)" to see all properties, and "Gma
```

For tuning with musyn, you augment the plant with weighting functions that enforce your performance requirement such as reference tracking, disturbance rejection, and robustness. For this example, use the weighting functions described in the example on the on the mixsyn reference page.

```
W1 = makeweight(10,[1 0.1],0.01);
W2 = makeweight(0.1,[32 0.32],1);
W3 = makeweight(0.01,[1 0.1],10);
Gaug = augw(Gmarg,W1,W2,W3);
```

Use musyn to design a controller.

Best achieved robust performance: 0.994
musyn achieves a robust performance of about 1, which tells you that the closed-loop gain remains below 1 for the full range of uncertainty specified in the plant. To confirm that the resulting controller achieves the target gain and phase margins, use wcdiskmargin to examine the worst-case gain and phase margins of the system against simultaneous variations at the plant inputs and outputs. Use the plant G that contains the parameter uncertainty but not the gain and phase uncertainty.

```
MMIO = wcdiskmargin(G,K)
MMIO = struct with fields:
    GainMargin: [0.6028 1.6588]
    PhaseMargin: [-27.8335 27.8335]
        DiskMargin: 0.4956
        LowerBound: 0.4956
        UpperBound: 0.4966
    CriticalFrequency: 1
    WorstPerturbation: [1x1 struct]
```

The worst-case disk-based gain margin of [0.6 1.66] is slightly larger than the target margin of [0.66 1.5], and the worst-case phase margin of $\pm 28^{\circ}$ is likewise better than the required margin of $\pm 20^{\circ}$. Thus, the controller K enforces the desired margins for the entire parameter-uncertainty range of the plant G .

For an example that uses umargin blocks with musyn to enforce gain and phase margins in a MIMO control loop, see "Robust Controller for Spinning Satellite".

Input Arguments

P - Uncertain plant
 uss model

Uncertain plant, specified as an uncertain state-space (uss) model. P has inputs [$w ; u$] and outputs [z;y], where:

- $\quad w$ represents the disturbance inputs.
- u represents the control inputs.
- z represents the error outputs to be kept small.
- y represents the measurement outputs provided to the controller.

Construct P such that measurement outputs y are the last outputs, and the control inputs u are the last inputs.

P can optionally contain weighting functions (loop-shaping filters) that represent control objectives that you want the controller to robustly satisfy. For a detailed example that constructs such an augmented plant for μ synthesis, see "Robust Control of an Active Suspension".

nmeas - Number of measurement outputs

1 (default) | nonnegative integer
Number of measurement output signals in the plant, specified as a nonnegative integer. The function takes the last nmeas plant outputs as the measurements y. The returned controller K has nmeas inputs.

ncont - Number of control inputs

1 (default) | nonnegative integer
Number of control input signals in the plant, specified as a nonnegative integer. The function takes the last ncont plant inputs as the controls u. The returned controller K has ncont outputs.

Kinit - Initial value of controller

dynamic system model
Initial value of the controller, specified as a dynamic system model, such as a state-space (ss) model. By default, musyn begins by computing an H_{∞} controller for the nominal system. Use Kinit to start with a different controller. Setting Kinit $=\operatorname{info}(\mathrm{j}) . \mathrm{K}$ uses the controller computed in the j th D-K iteration of the musyn run that produced info.

One use of this input argument is to continue iterating after musyn reaches the maximum number of iterations specified by the 'MaxIter' option of musyn0ptions. If the display shows that musyn is still making progress when it stops iterating, you can run musyn again, starting with the last synthesized controller, to see how much more musyn can improve the robust performance.

opts - Additional options

musyn0ptions object
Additional options for the computation, specified as an options object you create using musynOptions. Available options include the following:

- Turn on a full display of algorithm progress that pauses after each D-K iteration so that you can examine intermediate results.
- Use mixed μ synthesis to treat real uncertain parameters as real rather than as complex, for a less conservative and possibly more robust controller.
- Set maximum orders for the functions used to fit the D and G scalings.
- Use parallel computing for independent optimization runs when tuning a fixed-structure controller.

For information about all available options, see musyn0ptions.

CL0 - Closed-loop system with tunable controller elements

genss model
Closed-loop system with tunable controller elements, specified as a generalized state-space (genss) model with both uncertain and tunable control design blocks. Construct CL0 by creating and interconnecting:

- Numeric LTI models representing the fixed components of the control system
- Uncertain control design blocks, such as ureal and ultidyn blocks, representing the uncertain components of the plant
- Optional LTI weighting functions (loop-shaping filters) that represent control objectives
- Tunable control design blocks such as tunablePID, tunableSS, and tunableGain to represent tunable components of the controller C0

For an example that shows how to build such a model, see "Build Tunable Control System Model With Uncertain Parameters".

blockvals - Initial values of tunable parameters

structure | genss model
Initial values of the tunable parameters in CL0, specified as a structure or as a genss model. By default, musyn begins by tuning the controller parameters for the nominal system. Use blockvals to start with a different controller. Specify the initial parameter values as:

- A structure whose fields are the names of the tunable blocks, and whose values are control design blocks having the desired current values. For instance, if you have a tuned system CL obtained in a previous musyn run, you can initialize with the tuned values of the controller blocks in CL by setting blockvals = CL.Blocks.
- A genss model whose tunable blocks have the desired current value.

Setting blockvals = info(j).K uses the tuned values computed in the jth D-K iteration of the musyn run that produced info. For instance, if you have a tuned system CL, you can initialize with its tuned values by setting blockvals = CL. Such initialization can be useful for continuing iteration after musyn reaches the maximum number of iterations. If the display shows that musyn is still making progress when it stops iterating, you can run musyn again, starting with the last synthesized controller, to see how much more musyn can improve the robust performance.

Output Arguments

K - Controller

ss model
Controller that yields the robust H_{∞} performance CLperf, returned as a state-space (ss) model. The controller has nmeas inputs and ncont outputs.

The order of K depends on the order of the fitting functions for the D and G scalings and the number of uncertain blocks in your system. For information on how to reduce the order of the returned controller, see "Improve Results of Mu Synthesis".

CLperf - Best achieved robust performance

positive scalar

Best achieved robust performance, returned as a positive scalar. musyn attempts to optimize the controller K to minimize this value. The closed-loop gain from w to z remains below CLperf for uncertainty up 1/CLperf times the uncertainty specified in the plant. For instance, if CLperf is 1.125, then the closed-loop gain remains below 1.125 for up to 0.8 times the uncertainty specified in the plant. Use uscale to convert this normalized amount of uncertainty into the actual uncertainty ranges they represent.

For more information on the computation and interpretation of this quantity, see "Robust
Performance Measure for Mu Synthesis". For information on how to improve the best achieved robust performance, see "Improve Results of Mu Synthesis".

info - Details of D-K iteration results

structure array
Details of D-K iteration results, returned as a structure array. info (j) contains the results of the j th D-K iteration in the run. info has the following fields.

Field	Description
K	Optimal controller found in the K step of this iteration, returned as a state-space (ss) model or as a structure containing tuned control design blocks. - For unstructured controller synthesis, info (j) . K is a state-space model. - For fixed-structure controller tuning, info (j) . K is a structure whose names are the names of the tunable blocks in CL0. The values are tunable control design blocks with current values set to the tuned value.
gamma	Optimized scaled H_{∞} performance, returned as a scalar. This scaled performance is achieved by optimal controller info (j) .K. The default command-window display shows this value in the K Step column. For details about the computation and interpretation of this quantity, see "Robust Performance Measure for Mu Synthesis".
KInfo	H_{∞} synthesis data, returned as a structure. - For centralized, full-order controller synthesis, this structure is the same as the info output argument of hinfsyn. - For fixed-structure controller tuning, this structure is the same as the info output argument of hinfst ruct.
PeakMu	Robust performance $\bar{\mu}$ of the closed-loop system with controller info (j) .K, returned as a positive scalar value. The default command- window display shows this value in the Peak MU column . For details about the computation and interpretation of this quantity, see "Robust Performance Measure for Mu Synthesis".

Field	Description		
DG	D and G scaling data from robust performance analysis in this iteration, returned as a structure with the following fields. - Frequency - Vector of frequencies for which μ analysis was performed Dr, $\mathrm{Dc}, \mathrm{Gcr}-$ Values of the scaling factors $D_{r}(\omega), D_{c}(\omega)$, and $G_{c r}(\omega)$ at the corresponding frequencies.		
dr, dc, PSI	For more information about D and G scaling, see "Robust Performance Measure for Mu Synthesis".		
FitOrder	Rational fit of the D and G scaling data, returned as ss models. For details about how musyn fits the scaling data, see "Robust Performance Measure for Mu Synthesis".		
PeakMuFit	Orders of the functions used to fit the scaling data in this iteration, returned as a two-element vector. The two entries are the fit order for the D and G scalings, respectively. The default command-window display shows these values in the Fit Order column.		Scaled H_{∞} performance achieved with info(j$)$.K and the fitted D and G
:---			
scalings, returned as a scalar. The default command-window display			
shows this value in the DG Fit column .			

CL - Tuned closed-loop system

genss model
Tuned closed-loop system, returned as a generalized state-space genss model with the same uncertain and tunable control design blocks as CL0. The current values of the tunable blocks in CL. Blocks are set to the tuned values.

runs - Information about each independent run

structure array
Information about each independent randomized run, returned as a structure array. Use this output with fixed-structure μ synthesis when you set the 'RandomStart ' option of musynOptions to $\mathrm{N}>$ 0 . That option causes musyn to perform multiple independent D-K iteration runs initialized from different values of controller parameters. runs (j) contains the results of the j th independent restart in the following fields.

Field	Description
K	Optimal controller found in this run, returned as a structure containing the tuned values of the control design blocks.
muPerf	Best achieved robust $H \infty$ performance for this run, returned as a positive scalar. The controller that musyn returns when you use multiple runs is the one for which runs (j). muPerf is smallest.
Info	Details of D-K iteration results, returned as a structure array. runs (j$).$ Info contains fields corresponding to those of the info output of musyn, for the j th run.

Limitations

- For discrete-time plants, sample times that are very small compared to other dynamics in the problem can cause the synthesis to fail due to numeric issues. For best results, choose sample times such that significant dynamics (system dynamics and weighting functions) are not more than a decade or two below the Nyquist frequency. The issue arises because the dynamics of the D and G scalings tend to concentrate around the system dynamics. A too-small sample time results an accumulation of poles near $z=1$ (relative to the Nyquist frequency), which causes numeric problems with the Riccati solvers. Alternatively, design in continuous time.

Tips

- For more information on how to interpret the displays and outputs of musyn, see "Robust Controller Design Using Mu Synthesis".
- For information about how to improve the results you obtain with musyn, see "Improve Results of Mu Synthesis".

Algorithms

musyn uses an iterative process called D-K iteration. In this process, the function:
1 Uses H_{∞} synthesis to find a controller that minimizes the closed-loop gain of the nominal system.
2 Performs a robustness analysis to estimate the robust H_{∞} performance of the closed-loop system. This amount is expressed as a scaled H_{∞} norm involving dynamic scalings called the D and G scalings (the D step).
3 Finds a new controller to minimize the scaled H_{∞} norm obtained in step 2 (the K step).
4 Repeats steps 2 and 3 until the robust performance stops improving.
For more details about how this algorithm works, see "D-K Iteration Process".

Extended Capabilities

Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox ${ }^{\mathrm{TM}}$.
When you use musyn to tune a fixed-structure robust controller, you can use parallel computing for the underlying hinfstruct computation. To run in parallel, set 'UseParallel' to true using musynOptions.

See Also

hinfstruct | hinfsyn|musynOptions | musynnerf|uscale | wcgain

Topics

"Robust Controller Design Using Mu Synthesis"
"Improve Results of Mu Synthesis"
"Simultaneous Stabilization Using Robust Control"
"Control of Aircraft Lateral Axis Using Mu Synthesis"
"Robust Controller for Spinning Satellite"
"Control of a Spring-Mass-Damper System Using Mixed-Mu Synthesis"

Introduced in R2019b

musynOptions

Options for musyn

Syntax

opts = musynOptions
opts = musynOptions(Name,Value)

Description

opts = musynOptions returns the default options for performing μ synthesis with the musyn command.
opts = musynOptions(Name,Value) creates an option set with the options specified by one or more name-value pair arguments.

Examples

Specify Algorithm Options for Mu Synthesis

Create an options set for musyn that turns on mixed $-\mu$ analysis for real uncertainty, restricts the D and G scalings for repeated ureal blocks so they are diagonal, and limits the maximum number of D K iterations to 20.

```
opts = musynOptions('MixedMU','on','FullDG',false,'MaxIter', 20)
opts =
    musyn with properties:
            Display: 'short'
            MaxIter: 20
            TargetPerf: 0
            TolPerf: 0.0100
            MixedMU: 'on'
                FullDG: [0 0]
            FitOrder: [5 2]
        FrequencyGrid: [0x1 double]
            AutoScale: 'on'
            Regularize: 'on'
                LimitGain: 'on'
            RandomStart: 0
            UseParallel: 0
            MinDecay: 1.0000e-07
            MaxFrequency: Inf
```

Alternatively, start with the default options set, and use dot notation to change option values.

```
opts = musynOptions;
opts.MixedMu = 'on';
```

```
opts.FullDG = false;
opts.MaxIter = 20;
```

You can now use opts as an input argument to musyn to perform μ synthesis using the specified options.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: opts = musynOptions('MaxIter',20,'MixedMU','on') creates an option set for musyn to specify that the function take into account the presence of real uncertainty and to stop the D-K iteration process after at most 20 iterations.

General Options

Display - Flag to display progress of iterations

'short' (default)|'full'|'off'
Flag to display progress of D-K iterations and generate report in the command window, specified as the comma-separated pair consisting of 'Display' and 'short', 'full', or 'off'.

- 'short' - Display a brief summary after each iteration.
- ' full' - Pause after each iteration and display detailed results, including plots of D and G scaling data and the frequency dependence of μ.
- 'off' - Turn off the display.

For details on how to interpret the default ' short' display and the ' full' display, see "Robust Performance Measure for Mu Synthesis".

Example: opts = musynOptions('Display', 'off') creates an option set for musyn that turns the display off.

MaxIter - Maximum number of D-K iterations

10 (default) | positive integer
Maximum number of D-K iterations, specified as the comma-separated pair consisting of 'MaxIter' and a positive integer. musyn stops after the specified number of iterations or when the stopping tolerance specified by the 'TolPerf' option is reached, whichever is fewer.
Example: opts = musyn0ptions('MaxIter', 20) creates an option set for musyn that specifies a maximum of 20 iterations.

TargetPerf - Target robust \boldsymbol{H}_{∞} performance

0 (default) | nonnegative scalar
Target robust H_{∞} performance, specified as the comma-separated pair consisting of 'TargetPerf' and a nonnegative scalar. By default, musyn tries to drive the robust H_{∞} performance (PeakMu in the default display) to zero in each iteration. If you set 'TargetPerf' to a nonzero value, then D-K iteration terminates when the robust H_{∞} performance drops below this target value. If you know your
system can tolerate worse values of this performance metric, increasing this value can speed up the H_{∞} part of the D-K iteration. For details about this performance metric, see musynperf.

Example: opts = musyn0ptions('TargetPerf',1) creates an option set for musyn that specifies a target H_{∞} performance value of 1 .

TolPerf - Stopping tolerance

0.01 (default) | 0 | nonnegative scalar

Stopping tolerance, specified as the comma-separated pair consisting of 'TolPerf' and a nonnegative scalar. The musyn computation terminates when the robust H_{∞} performance improves by less than this value over two consecutive iterations. Because of the limited accuracy of fitting the D and G scalings, reducing 'TolPerf' below the default does not necessarily yield more precise results.

If 'TolPerf' $=0$, then musyn always performs the number of iterations specified by 'MaxIter', regardless changes in the robust performance from iteration to iteration.
Example: opts $=$ musyn0ptions('TolPerf', 0) creates an option set for musyn that causes the function to always perform the number of iterations specified by MaxIter.

Options for D Step (μ Analysis)

MixedMU - Option to specify real or complex μ analysis

'off' (default)| 'on'
Option to specify real or complex μ analysis, specified as the comma-separated pair consisting of 'MixedMU' and 'off' or 'on'. By default, musyn treats all uncertainties as complex, which can result in overly conservative estimates for the upper bound on μ. If your plant has real uncertain parameters, try setting 'MixedMu' to 'on' to see if musyn returns a controller with better performance.

For more information, see "Improve Results of Mu Synthesis".
Example: opts = musyn0ptions('MixedMU', 'on') creates an option set for musyn that causes the function to take into account the presence of real uncertainty.

Fulldg - Structure of D and G scalings
true (default)|false|[true false]|[false true]
Structure of D and G scalings, specified as the comma-separated pair consisting of ' FulldG ' and true, false, [true false], or [false true].

By default, musyn uses full scalings for uncertain blocks that appear multiple times in the control system. Full scaling matrices can have frequency-dependent entries both on and off the diagonal. The alternative, diagonal scaling, is equivalent to treating each repeated block as an independent instance of the uncertain parameter. Therefore, full scaling is less conservative than diagonal scaling, and can yield better robust performance.

However, when blocks are repeated more than about four or five times, full scaling can be impractical, leading to lengthy computation, undesirably high-order controllers, or both. In such cases, restricting scalings to diagonal can improve results. To do so, set 'FullDG' to:

- false to limit both D and G scalings to diagonal.
- [true false] to use full D scaling but diagonal G scaling. This option is useful because fitting full G scalings is more likely to cause high-order controllers than full D scaling.
- [false true] to use full G scaling but diagonal D scaling. This option is useful if you need full G scaling to get a good fit, but observe that full D scaling does not improve musyn results.

For details about how the musyn algorithm uses D and G scalings, see "Robust Performance Measure for Mu Synthesis".

Example: opts $=$ musyn0ptions('FulldG',false) creates an option set for musyn that causes the function to use diagonal scalings for both D and G.

FitOrder - Maximum order for fitting D and G scaling data

[5 2] (default) | vector of two positive integers
Maximum order for fitting D and G scaling data, specified as the comma-separated pair consisting of 'FitOrder' and a vector of two positive integers. The integers specify the maximum fit orders for the D and G scalings, respectively. (For details about how the musyn algorithm uses and fits scalings, see "Robust Performance Measure for Mu Synthesis".)

For each iteration, musyn fits each entry in the D and G scaling matrices by a rational function whose order is automatically selected. By default, the maximum order is 5 for D scaling and 2 for G scaling. (G scaling is for dynamics in addition to dynamics needed to capture sign changes, so the final order of the G fit can be higher.) In general, the higher the order of these functions, the higher the order of the resulting controller.

To see whether you need to increase the maximum order, examine the musyn command-line display for a rough indication of fit quality. The Peak MU and DG Fit columns of the display give the best obtained robust performance before and after fitting, respectively. If the value for any given iteration increases drastically after fitting, you might obtain better results by increasing the maximum order.

Conversely, if the default maximum scaling order yields a good result, you can try lowering the maximum order to see if musyn returns a lower-order controller with similar performance.

Example: opts $=$ musyn0ptions('FitOrder', [3 2]) creates an option set for musyn that reduces the maximum fit order to 3 for the D scaling and 2 for the G scaling.

FrequencyGrid - Frequency grid used for $\boldsymbol{\mu}$ analysis

[] (default) | vector of frequencies

Frequency grid used for μ analysis, specified as the comma-separated pair consisting of
'FrequencyGrid' and an empty vector or a vector of frequencies in radians per second. By default, musyn computes an appropriate frequency grid based on system dynamics and the frequency dependence of the D and G scaling data. This default generally yields better results than a custom frequency grid, which restricts the computation to the specified frequencies regardless of the actual frequency dependence of the scaling data. Therefore, specifying frequencies is not recommended unless you know the frequency range in which D and G vary.

Options for K Step with Unstructured Controller (hinfsyn Controller Design)

AutoScale - Automatic plant scaling

'on' (default)|'off'
Automatic plant scaling, specified as the comma-separated pair consisting of 'AutoScale' and one of the following:

- ' on ' - The underlying hinfsyn computation in the K step automatically scales the plant states, controls, and measurements to improve numerical accuracy. musyn always returns the controller in the original unscaled coordinates.
- 'off' - hinfsyn does not change the plant scaling. Turning off scaling when you know your plant is well scaled can speed up the computation.

Example: opts = musyn0ptions('AutoScale', 'off') creates an option set for musyn that turns off automatic scaling for the underlying hinfsyn computation.

Regularize - Automatic regularization
 'on' (default)|'off'

Automatic regularization of the plant, specified as the comma-separated pair consisting of 'Regularize' and one of the following:

- ' on ' - The underlying hinfsyn computation in the K step automatically regularizes the plant to enforce certain nonsingularity requirements (see hinfsyn). Regularization is a process of adding extra disturbances and errors to handle singular problems.
- 'off' - hinfsyn does not regularize the plant. Turning off regularization can speed up the computation when you know your problem is far enough from singular.

Example: opts = musyn0ptions('Regularize', 'off') creates an option set for musyn that turns off regularization for the underlying hinfsyn computation.

LimitGain - Limit on controller gains

'on' (default)| 'off'
Limit on controller gains, specified as the comma-separated pair consisting of 'LimitGain ' and either 'on' or 'off'. For continuous-time plants, regularization of plant feedthrough matrices D_{12} or D_{21} (see hinfsyn) can result in controllers with large coefficients and fast dynamics. Use this option to automatically seek a controller with the same performance but lower gains and better conditioning.

Options for K Step with Structured Controller (hinfstruct Controller Design)

RandomStart - Number of starts with randomized parameter values
 0 (default) | positive integer

Number of additional optimization starts with randomized values of tunable controller parameters, specified as the comma-separated pair consisting of 'RandomStart ' and 0 or a positive integer.

By default, the underlying hinfstruct computation performs a single optimization run starting from the initial values of the tunable parameters. hinfstruct finds a local minimum of the gain minimization problem. To mitigate the risk of premature termination due to a local minimum that is not the best performing controller, you can perform multiple independent D-K iteration runs initialized from different values of controller parameters. Setting RandomStart $=N>0$ runs N additional musyn optimizations starting from N randomly generated parameter values.

Randomization only affects the initialization of the overall D-K iteration run. It does not affect each call to hinfstruct within a D-K iteration run.

When all runs are complete, musyn uses the best design that results from the multiple runs.
Use with 'UseParallel' = true to distribute independent optimization runs among MATLAB workers (requires Parallel Computing Toolbox software).
Example: opts = musynOptions('RandomStart',5) creates an option set for musyn that runs the underlying hinfstruct computation a total of six times, using randomized initial values for the tunable parameters.

UseParallel - Option to enable parallel computing

false (default) | true
Option to enable parallel computing, specified as the comma-separated pair consisting of 'UseParallel' and false or true. When you use musyn to tune a structured controller, set this option to true to distribute independent optimization runs among MATLAB workers in a parallel pool. If there is an available parallel pool, then the software performs independent optimization runs concurrently among workers in that pool. If no parallel pool is available, one of the following occurs:

- If you select Automatically create a parallel pool in your Parallel Computing Toolbox preferences (Parallel Computing Toolbox), then the software starts a parallel pool using the settings in those preferences.
- If you do not select Automatically create a parallel pool in your preferences, then the software performs the optimization runs successively, without parallel processing.

Using parallel computing requires Parallel Computing Toolbox software.
Example: opts = musyn0ptions('UseParallel',true) creates an option set for musyn that turns on parallel computing for the underlying hinfstruct computation.

MinDecay - Minimum decay rate for closed-loop poles

1e-7 (default) | positive scalar

Minimum decay rate for closed-loop poles, specified as the comma-separated pair consisting of 'MinDecay ' and a positive scalar value. The poles of the closed-loop system are constrained to satisfy $\operatorname{Re}(p)<-M i n D e c a y$. Increase this value to improve the stability of closed-loop poles that do not affect the closed-loop gain due to pole-zero cancellations.

Specify MinDecay in units of 1/TimeUnit, relative to the TimeUnit property of the system you are tuning.

MaxFrequency - Maximum closed-loop natural frequency

Inf (default) | positive scalar
Maximum closed-loop natural frequency, specified as the comma-separated pair consisting of 'MaxFrequency ' and Inf or a positive scalar value. Setting MaxFrequency constrains the closedloop poles to satisfy $|\mathrm{p}|<\operatorname{MaxFr}$ requency. To let musyn choose the closed-loop poles without such constraint, set MaxFrequency = Inf. To prevent unwanted fast dynamics or high-gain control, set MaxFrequency to a finite value.

Specify MaxFrequency in units of 1/TimeUnit, relative to the TimeUnit property of the system you are tuning.

Output Arguments

opts - Options for musyn

musyn options object
Options for the musyn computation, returned as a musyn options object. Use the object as an input argument to musyn. For example:

```
[K,CLperf,info] = musyn(P,nmeas,ncont,opts);
```


See Also

musyn

Topics

"Robust Controller Design Using Mu Synthesis"
"Improve Results of Mu Synthesis"
"Robust Performance Measure for Mu Synthesis"
"D-K Iteration Process"

Introduced in R2019b

musynperf

Robust H_{∞} performance optimized by musyn

Syntax

[gamma,wcu] = musynperf(clp)
[gamma,wcu] = musynperf(clp,w)
[gamma,wcu] = musynperf(__, opts)
[gamma,wcu,info] = musynperf(___)

Description

The robust H_{∞} performance of an uncertain system is the smallest value γ such that the I/O gain of the system stays below γ for all modeled uncertainty up to size $1 / \gamma$ (in normalized units). The musyn function synthesizes a robust controller by minimizing this quantity for the closed-loop system over all possible choices of controller. musynperf computes this quantity for a specified uncertain model. For a detailed discussion of robust H_{∞} performance and how it is computed, see "Robust Performance Measure for Mu Synthesis".
[gamma,wcu] = musynperf(clp) calculates the robust H_{∞} performance for an uncertain closedloop system clp. The robust H_{∞} performance is the smallest value γ for which the peak I/O gain stays below γ for all modeled uncertainty up to $1 / \gamma$, in normalized units. For example, a value of $\gamma=1.125$ implies the following:

- The I/O gain of clp remains less than 1.125 as long as the uncertain elements stay within 0.8 normalized units of their nominal values. In other words, for uncertain element values within 0.8 normalized units, the largest possible H_{∞} norm is 1.125.
- For some perturbation of size 0.8 normalized units, the peak I/O gain is 1.125.

The peak I/O gain is the maximum I/O gain over all inputs, which is also the peak of the largest singular value over all frequencies and uncertainties. In other words, if Δ represents all possible values of the uncertain parameters in the closed-loop transfer function $C L P(j \omega)$, then

$$
\gamma=\max _{\Delta} \max _{\omega} \sigma_{\max }(C L P(j \omega)) .
$$

The output structure gamma contains upper and lower bounds on the robust H_{∞} performance and the critical frequency at which the I/O gain of clp reaches the lower bound. The structure wcu contains the uncertain-element values that drive the peak I/O gain to the lower bound.
[gamma,wcu] = musynperf(clp,w) computes the robust H_{∞} performance at the frequencies specified by w.

- If w is a cell array of the form $\{w m i n, w m a x\}$, then musynperf restricts the computation to the interval between wmin and wmax.
- If w is a vector of frequencies, then musynperf computes the H_{∞} performance at the specified frequencies only.
[gamma,wcu] = musynperf(__ , opts) specifies additional options for the computation. Use rob0ptions to create opts. You can use this syntax with any of the previous input-argument combinations.
[gamma,wcu,info] = musynperf(\qquad) returns a structure with additional information about the H_{∞} performance values and the perturbations that drive the I/O gain to γ. See info for details about this structure. You can use this syntax with any of the previous input-argument combinations.

Examples

Reduce Synthesized Controller While Preserving Robust Performance

When you use musyn to synthesize an unstructured robust controller, the resulting controller often is of higher order than is necessary to achieve the desired robust performance. One way to mitigate this problem is to perform model reduction, using musynperf to test the robust performance of the reduced-order controller.

Create an uncertain model of the control system described in the example "Robust Tuning of FixedStructure Controller" on the musyn reference page.

```
G = tf(1,[1 -1]);
Wu = 0.25*tf([1/2 1],[1/32 1]);
InputUnc = ultidyn('InputUnc',[1 1]);
Gpert = G*(1+InputUnc*Wu);
Gpert.InputName = 'u';
Gpert.OutputName = 'yl';
Wp = makeweight(100,[1 0.5],0.25);
Wp.InputName = 'y';
Wp.OutputName = 'e';
SumD = sumblk('y = y1 + d');
inputs = {'d','u'};
outputs = {'e','y'};
P = connect(Gpert,Wp,SumD,inputs,outputs);
[K,CLperf] = musyn(P,1,1);
D-K ITERATION SUMMARY:
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Robust performance} & Fit order \\
\hline Iter & K Step & Peak MU & D Fit & D \\
\hline 1 & 1.345 & 1.344 & 1.36 & 8 \\
\hline 2 & 0.7923 & 0.7904 & 0.7961 & 4 \\
\hline 3 & 0.6789 & 0.6789 & 0.6857 & 10 \\
\hline 4 & 0.6572 & 0.6572 & 0.6598 & 8 \\
\hline 5 & 0.6538 & 0.6538 & 0.6542 & 8 \\
\hline 6 & 0.6532 & 0.6532 & 0.6533 & 8 \\
\hline
\end{tabular}
Best achieved robust performance: 0.653
N = order(K)
N = 11
```

musyn returns an 11th-order controller and the robust H_{∞} performance CLperf of the closed-loop system using that controller. The best achieved robust performance of about 0.65 is good, but the controller order is high. Compute reduced-order controllers for orders ranging from 1 to full order.

Kred $=$ reduce $(\mathrm{K}, 1: \mathrm{N})$;
Find the lowest-order controller Klow with performance no worse than 1.05*CLperf, or 5\% degradation compared to the full-order controller.

```
for k=1:N
    Klow = Kred(:,:,k);
    CL = lft(P,Klow);
    [gamma,~] = musynperf(CL);
    if gamma.UpperBound < 1.05*CLperf
        break
    end
end
order(Klow)
ans = 4
```

To validate the reduced-order controller, examine the robust H_{∞} performance of the system using the simplified controller with that of the system using the full-order controller.

```
CLPlow = lft(P,Klow);
[gammalow,~] = musynperf(CLPlow);
gammalow.UpperBound
ans = 0.6613
```

The fourth-order controller achieves very similar robust H_{∞} performance to the 11th-order controller returned by musyn.

Input Arguments

clp - Closed-loop uncertain system
 uss | ufrd | genss | genfrd

Closed-loop uncertain system, specified as a uss, ufrd, genss, or genfrd model that contains uncertain elements. For genss or genfrd models, musynperf uses the current value of any tunable blocks and folds them into the known (not uncertain) part of the model.

w - Frequencies

\{wmin, wmax\} | vector
Frequencies at which to compute robust H_{∞} performance, specified as the cell array \{wmin, wmax\} or as a vector of frequency values.

- If w is a cell array of the form \{wmin, wmax\}, then the function computes the H_{∞} performance at frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then the function computes the H_{∞} performance at each specified frequency. For example, use logspace to generate a row vector with logarithmically spaced frequency values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the model.

opts - Options for \boldsymbol{H}_{∞} performance computation

robOptions object
Options for computation of robust H_{∞} performance, specified as robOptions object. Use robOptions to create the options object. The available options include settings that let you:

- Extract frequency-dependent H_{∞} performance values.
- Examine the sensitivity of the H_{∞} performance to each uncertain element.
- Improve the results of the calculation by setting certain options for the underlying mussv calculation. In particular, setting the option 'Mussv0ptions' to ' mN ' can reduce the gap between the lower bound and upper bound. N is the number of restarts.

For more information about all available options, see robOptions.
Example: rob0ptions('Sensitivity', 'on', 'Mussv0ptions', 'm3')

Output Arguments

gamma - Robust \boldsymbol{H}_{∞} performance and critical frequency

structure
Robust H_{∞} performance and critical frequency, returned as a structure containing the following fields:

Field	Description
LowerBound	Lower bound on the actual robust H_{∞} performance γ, returned as a scalar value. The exact value of γ is guaranteed to be no smaller than LowerBound. In other words, some uncertain-element values of magnitude 1/ LowerBound exist for which the I/O gain of clp reaches LowerBound. The function returns one such instance in wcu.
UpperBound	Upper bound on the actual robust H_{∞} performance, returned as a scalar value. The exact value is guaranteed to be no larger than UpperBound. In other words, for all modeled uncertainty with normalized magnitude up to 1/ UpperBound, the peak I/O gain of clp is less than UpperBound.
CriticalFrequency	Frequency at which the I/O gain reaches LowerBound, in rad/TimeUnit, where TimeUnit is the TimeUnit property of clp.

Use uscale or normalized2actual to convert the normalized uncertainty values 1/LowerBound or $1 / U p p e r B o u n d ~ t o ~ a c t u a l ~ d e v i a t i o n s ~ f r o m ~ n o m i n a l ~ v a l u e s . ~$

wcu - Perturbations driving I/O gain to gamma.LowerBound
 structure

Perturbations driving I/O gain to gamma. LowerBound, returned as a structure whose fields are the names of the uncertain elements of clp . Each field contains the actual value of the corresponding
uncertain element. For example, if clp includes an uncertain matrix M and SISO uncertain dynamics delta, then wcu.M is a numeric matrix and wcu.delta is a SISO state-space model.

Use usubs ($c l p, w c u$) to substitute these values for the uncertain elements in $c l p$ and obtain the corresponding dynamic system. This system has a peak gain of gamma. LowerBound.

Use actual2normalized to convert these actual uncertainty values to the normalized units in which $1 /$ gamma. LowerBound or $1 /$ gamma.UpperBound are expressed.

info - Additional information about $\boldsymbol{\gamma}$ values

structure
Additional information about the γ values, returned as a structure with the following fields.

Field	Description Frequency Frequency points at which musynperf returns γ values, returned as a vector. - If the 'VaryFrequency ' option of robOptions is 'off' , then info. Frequency is the critical frequency, the frequency at which the I/O gain reaches gamma. LowerBound. If the smallest lower bound and the smallest upper bound on γ occur at different frequencies, then info. Frequency is a vector containing these two frequencies. If the 'VaryFrequency ' option of robOptions is 'on ', then info. Frequency contains the frequencies selected by musynperf. These frequencies are guaranteed to include the frequency at which the peak gain occurs.
- If you specify a vector of frequencies w at which to	
compute γ, then info. Frequency $=w$. When you	
specify a frequency vector, these frequencies are not	
guaranteed to include the frequency at which the peak	
gain occurs.	

Field	Description
WorstPerturbation	Smallest perturbations at each frequency point in info. Frequency, returned as a structure array. The fields of info. WorstPerturbation are the names of the uncertain elements in clp. Each field contains the value of the corresponding element that drives the I/O gain to the corresponding lower bound at each frequency. For example, if clp includes an uncertain parameter p and SISO uncertain dynamics delta, then info. WorstPerturbation. p is a collection of numeric values and info. WorstPerturbation. delta is a collection of SISO state-space models.
Sensitivity	Sensitivity of γ to each uncertain element, returned as a structure when the 'Sensitivity' option of robOptions is 'on' ' The fields of info. Sensitivity are the names of the uncertain elements in clp. Each field contains a percentage that measures how much the uncertainty in the corresponding element affects γ. For example, if info. Sensitivity.p is 50, then a given fractional change in the uncertainty range of p causes half as much fractional change in γ.
If the ' Sensitivity ' option of robOptions is ' off ' (the default setting), then info. Sensitivity is NaN.	

See Also

actual2normalized|musyn|normalized2actual|rob0ptions|robgain| robstab|uscale |wcgain

Topics

"Robust Performance Measure for Mu Synthesis"

Introduced in R2019b

ncfmargin

Calculate normalized coprime stability margin of plant-controller feedback loop

Syntax

```
[marg,freq] = ncfmargin(P,C)
[marg,freq] = ncfmargin(P,C,sign)
[marg,freq] = ncfmargin(
```

\qquad

``` ,tol)
```


Description

[marg,freq] = ncfmargin(P, C) returns the normalized coprime stability margin of the multivariable feedback loop consisting of a controller C in negative feedback with a plant P :

The normalized coprime robust stability margin (also called the gap metric stability margin) is an indication of robustness to unstructured perturbations. Values greater than 0.3 generally indicate good robustness margins.
[marg,freq] = ncfmargin(P,C,sign) specifies the sign of the feedback connection assumed for the margin calculation. By default, sign $=-1$. Set sign $=+1$ for positive-feedback interconnection.
[marg,freq] = ncfmargin(\qquad ,tol) calculates the normalized coprime factor metric with the specified relative accuracy.

Examples

Normalized Coprime Stability Margin

Consider an unstable first-order plant, p , stabilized by high-gain and low-gain controllers, cL and cH .

```
p = tf(4,[1 -0.001]);
cL = 1;
cH = 10;
```

Compute the stability margin of the closed-loop system with the low-gain controller.

```
[margL,~] = ncfmargin(p,cL)
margL = 0.7069
```

Similarly, compute the stability margin of the closed-loop system with the high-gain controller.

```
[margH,~] = ncfmargin(p,cH)
```

```
margH = 0.0995
```

The closed-loop systems with low-gain and high-gain controllers have normalized coprime stability margins of about 0.71 and 0.1 , respectively. This result indicates that the closed-loop system with low-gain controller is more robust to unstructured perturbations than the system with the high-gain controller.

To observe this difference in robustness, construct an uncertain plant, punc, that has additional unmodeled dynamics at high frequency compared to the nominal plant.

```
punc = p + ultidyn('uncstruc',[1 1],'Bound',1);
sigma(p,punc,'r--')
```


Calculate the robust stability of the closed-loop systems formed by the uncertain plant and each controller.

```
[stabmargL,~] = robstab(feedback(punc,cL))
stabmargL = struct with fields:
            LowerBound: 0.9980
    UpperBound: 1
    CriticalFrequency: Inf
[stabmargH,~] = robstab(feedback(punc,cH))
stabmargH = struct with fields:
    LowerBound: 0.0998
```

As expected, the robust stability analysis shows that the closed-loop system with low-gain controller is more robustly stable in the presence of the unmodeled LTI dynamics. In fact, this closed-loop system can tolerate almost 100% of the specified uncertainty. In contrast, closed-loop system with the high-gain controller can tolerate only about 10% of the specified uncertainty.

Compute Gap Metric and Stability Margin

Consider a plant and a stabilizing controller.

```
P1 = tf([1 2],[1 5 10]);
```

C = tf(4.4,[10]);

Compute the stability margin for this plant and controller.
b1 = ncfmargin(P1,C)
b1 $=0.1961$
Next, compute the gap between P1 and the perturbed plant, P2.

```
P2 = tf([1 1],[1 3 10]);
[gap,nugap] = gapmetric(P1,P2)
gap = 0.1391
nugap = 0.1390
```

Because the stability margin $\mathrm{b} 1=\mathrm{b}(\mathrm{P} 1, \mathrm{C})$ is greater than the gap between the two plants, C also stabilizes P2. As discussed in "Gap Metrics and Stability Margins" on page 1-132, the stability margin $\mathrm{b} 2=\mathrm{b}(\mathrm{P} 2, \mathrm{C})$ satisfies the inequality $\operatorname{asin}(\mathrm{b}(\mathrm{P} 2, \mathrm{C})) \geq \operatorname{asin}(\mathrm{b} 1)-\mathrm{asin}(\mathrm{gap})$. Confirm this result.
b2 = ncfmargin(P2,C);
[asin(b2) asin(b1)-asin(gap)]
ans $=1 \times 2$
0.09970 .0579

Input Arguments

P - Plant
 dynamic system model

Plant, specified as a dynamic system model. P can be SISO or MIMO, as long as $\mathrm{P} * \mathrm{C}$ has the same number of inputs and outputs. P can be continuous time or discrete time. If P is a generalized statespace model (genss or uss) then ncfmargin uses the current or nominal value of all control design blocks in P .

C - Controller

dynamic system model
Plant, specified as a dynamic system model. C can be SISO or MIMO, as long as $\mathrm{P}^{*} \mathrm{C}$ has the same number of inputs and outputs. C can be continuous time or discrete time. If C is a generalized statespace model (genss or uss) then ncfmargin uses the current or nominal value of all control design blocks in P.

By default, ncfmargin assumes a negative-feedback interconnection between P and C . To compute the margins for a closed-loop system with positive feedback, use [marg, freq] = ncfmargin(P, C, $+1)$.

sign - Sign of feedback

- 1 (default) | +1

Sign of the feedback connection, specified as either -1 or +1 .
The default value, sign $=-1$, specifies negative feedback. Setting sign $=+1$ assumes a positive feedback connection for the margin calculation, as in the following diagram.

tol - Relative accuracy

0.001 (default) | positive scalar less than 1

Relative accuracy for the computed margin, specified as a positive scalar value less than 1 . The default value is 0.001 , or 0.1% accuracy.

Output Arguments

marg - Normalized coprime robust stability margin

scalar in [0,1]
Normalized coprime robust stability margin, returned as a scalar in the range [0,1]. This quantity, also known as the gap metric stability margin, is an indicator of closed-loop robustness to unstructured perturbations. For negative-feedback control architecture, It is defined as:

$$
b(P, C)=\left\|\left[\begin{array}{l}
I \\
C
\end{array}\right](I+P C)^{-1}\left[\begin{array}{ll}
I & P
\end{array}\right]\right\|_{\infty}^{-1}=\left\|\left[\begin{array}{l}
I \\
P
\end{array}\right](I+C P)^{-1}\left[\begin{array}{ll}
I & C
\end{array}\right]\right\|_{\infty}^{-1} .
$$

Values greater than 0.3 generally indicate good robustness margins. If the closed-loop system is unstable, then marg $=0$. The quantity $b(P, C)^{-1}$ is the signal gain from disturbances on the plant input and output to the input and output of the controller.

freq - Frequency at which margin occurs

scalar | NaN

Frequency at which the margin marg occurs, returned as a scalar. If the closed-loop system is unstable, then freq $=\mathrm{NaN}$.

More About

Stability Margin and Gap Metrics

The stability margin $b(P, C)$ is related to the gap metric, which gives a numerical value $\delta\left(P_{1}, P_{2}\right)$ for the distance between two LTI systems (see gapmetric).

For both the gap and ν-gap metrics, the following robust performance result holds:
$\arcsin b\left(P_{2}, C_{2}\right) \geq \arcsin b\left(P_{1}, C_{1}\right)-\arcsin \delta\left(P_{1}, P_{2}\right)-\arcsin \delta\left(C_{1}, C_{2}\right)$,
To interpret this result, suppose that a nominal plant P_{1} is stabilized by controller C_{1} with stability margin $b\left(P_{1}, C_{1}\right)$. Then, if P_{1} is perturbed to P_{2} and C_{1} is perturbed to C_{2}, the stability margin is degraded by no more than the above formula.

The ν-gap is always less than or equal to the gap, so its predictions using the above robustness result are tighter.

Tips

- While ncfmargin assumes a negative-feedback loop, the ncfsyn command designs a controller for a positive-feedback loop. Therefore, to compute the margin using a controller designed with ncfsyn, use [marg,freq] = ncfmargin($\mathrm{P}, \mathrm{C},+1$).

Algorithms

The computation of the normalized coprime stability margin is as described in Chapter 16 of [1].

References

[1] Zhou, K., Doyle, J.C., Essentials of Robust Control. London, UK: Pearson, 1997.

See Also
diskmargin | gapmetric|ncfsyn | robstab|wcdiskmargin
Introduced before R2006a

ncfmr

Balanced model truncation for normalized coprime factors

Syntax

```
GRED = ncfmr(G)
GRED = ncfmr(G,order)
[GRED,redinfo] = ncfmr(G,keyl,value1,...)
[GRED,redinfo] = ncfmr(G,order,key1,value1,...)
```


Description

ncfmr returns a reduced order model GRED formed by a set of balanced normalized coprime factors and a struct array redinfo containing the left and right coprime factors of G and their coprime Hankel singular values.

Hankel singular values of coprime factors of such a stable system indicate the respective "state energy" of the system. Hence, reduced order can be directly determined by examining the system Hankel SV's.

With only one input argument G , the function will show a Hankel singular value plot of the original model and prompt for model order number to reduce.

The left and right normalized coprime factors are defined as [1]

- Left Coprime Factorization: $G=M_{l}^{-1}(s) N_{l}(s)$
- Right Coprime Factorization: $G=N_{r}(s) M_{r}^{-1}(s)$
where there exist stable $U_{r}(s), V_{r}(s), U_{l}(s)$ and $V_{l}(s)$ such that

$$
\begin{aligned}
& U_{r} N_{r}+V_{r} M_{r}=I \\
& N_{l} U_{l}+M_{l} V_{l}=I
\end{aligned}
$$

The left/right coprime factors are stable, hence implies $M_{r}(\mathrm{~s})$ should contain as RHP-zeros all the RHP-poles of $G(\mathrm{~s})$. The coprimeness also implies that there should be no common RHP-zeros in $N_{r}(\mathrm{~s})$ and $M_{r}(\mathrm{~s})$, i.e., when forming $G=N_{r}(s) M_{r}^{-1}(s)$, there should be no pole-zero cancellations.

This table describes input arguments for ncmfr.

Argument	Description
G	LTI model to be reduced (without any other inputs will plot its Hankel singular values and prompt for reduced order)
ORDER	(Optional) Integer for the desired order of the reduced model, or optionally a vector packed with desired orders for batch runs

A batch run of a serial of different reduced order models can be generated by specifying order = $x: y$, or a vector of integers. By default, all the anti-stable part of a system is kept, because from
control stability point of view, getting rid of unstable state(s) is dangerous to model a system. The ncfmr method allows the original model to have $\mathrm{j} \omega$-axis singularities.
'MaxError' can be specified in the same fashion as an alternative for 'ORDER'. In this case, reduced order will be determined when the sum of the tails of the Hankel singular values reaches the 'MaxError'.

Argument	Value	Description
'MaxError'	A real number or a vector of different errors	Reduce to achieve H_{∞} error. When present, 'MaxError' overrides ORDER input.
'Display'	'on' or 'off'	Display Hankel singular plots (default 'off ' ').
'Order'	integer, vector or cell array	Order of reduced model. Use only if not specified as 2nd argument.

Weights on the original model input and/or output can make the model reduction algorithm focus on some frequency range of interests. But weights have to be stable, minimum phase, and invertible.

This table describes output arguments.

Argument	Description
GRED	LTI reduced order model, that becomes multi-dimensional array when input is a serial of different model order array.
REDINFO	A STRUCT array with 3 fields:
	- REDINFO.GL (left coprime factor)
	- REDINFO.GR (right coprime factor)
	- REDINFO.hsv (Hankel singular values)

G can be stable or unstable, continuous or discrete.

Examples

Given a continuous or discrete, stable or unstable system, G , the following commands can get a set of reduced order models based on your selections:

```
rng(1234,'twister');
G = rss(30,5,4);
G.D = zeros(5,4);
[g1, redinfol] = ncfmr(G); % display Hankel SV plot
                            % and prompt for order (try 15:20)
[g2, redinfo2] = ncfmr(G,20);
[g3, redinfo3] = ncfmr(G,[10:2:18]);
[g4, redinfo4] = ncfmr(G,'MaxError',[0.01, 0.05]);
for i = 1:4
    figure(i)
    eval(['sigma(G,g' num2str(i) ');']);
end
```


Algorithms

Given a state space (A, B, C, D) of a system and k, the desired reduced order, the following steps will produce a similarity transformation to truncate the original state-space system to the $k^{\text {th }}$ order reduced model.

1 Find the normalized coprime factors of G by solving Hamiltonian described in [1].

$$
\begin{aligned}
G_{l} & =\left[\begin{array}{ll}
N_{l} & M_{l}
\end{array}\right] \\
G_{r} & =\left[\begin{array}{l}
N_{r} \\
M_{r}
\end{array}\right]
\end{aligned}
$$

2 Perform $k^{\text {th }}$ order square root balanced model truncation on G_{l} (or G_{r}) [2].
3 The reduced model GRED is:

$$
\left[\begin{array}{ll}
\widehat{A} & \widehat{B} \\
\widehat{C} & \widehat{D}
\end{array}\right]=\left[\begin{array}{cc}
A_{c}-B_{m} C_{l} & B_{n}-B_{m} D_{l} \\
C_{l} & D_{l}
\end{array}\right]
$$

where
$N_{l}(:=$
A_{c},
B_{n},
C_{c},
$\left.D_{n}\right)$
$M_{l}:=\left(A_{c}, B_{m}, C_{c}, D_{m}\right)$
$C_{l}=\left(D_{m}\right)^{-1} C_{c}$
$D_{l}=\left(D_{m}\right)^{-1} D_{n}$

References

[1] M. Vidyasagar. Control System Synthesis - A Factorization Approach. London: The MIT Press, 1985.
[2] M. G. Safonov and R. Y. Chiang, "A Schur Method for Balanced Model Reduction," IEEE Trans. on Automat. Contr., vol. AC-2, no. 7, July 1989, pp. 729-733.

See Also

balancmr|bstmr|hankelmr|hankelsv|reduce | schurmr
Introduced before R2006a

ncfsyn

Loop shaping design using Glover-McFarlane method

Syntax

```
[K,CL,gamma,info] = ncfsyn(G)
[K,CL,gamma,info] = ncfsyn(G,W1)
[K,CL,gamma,info] = ncfsyn(G,W1,W2)
[K,CL,gamma,info] = ncfsyn(G,W1,W2,'ref')
```


Description

ncfsyn implements a method for designing controllers that uses a combination of loop shaping and robust stabilization as proposed in [1]-[2]. The function computes the Glover-McFarlane H_{∞} normalized coprime factor loop-shaping controller K for a plant G with pre-compensator and postcompensator weights W_{1} and W_{2}. The function assumes the positive feedback configuration of the following illustration.

To specify negative feedback, replace G by $-G$. The controller K_{s} stabilizes a family of systems given by a ball of uncertainty in the normalized coprime factors of the shaped plant $G_{s}=W_{2} G W_{1}$. The final controller K returned by ncfsyn is obtained as $K=W_{1} K_{s} W_{2}$.
[K,CL,gamma,info] = ncfsyn(G) computes the Glover-McFarlane H_{∞} normalized coprime factor loop-shaping controller K for the plant G, with $W_{1}=W_{2}=I$. CL is the closed-loop system from the disturbances w_{1} and w_{2} to the outputs z_{1} and z_{2}. The function also returns the H_{∞} optimal cost gamma, and a structure containing additional information about the result.
[K, CL, gamma, info] $=$ ncfsyn $(\mathrm{G}, \mathrm{W} 1)$ computes the controller using the pre-compensator weight you specify in $W 1$, and $W_{2}=I$.
$[\mathrm{K}, \mathrm{CL}$, gamma, info] $=\mathrm{ncfsyn}(\mathrm{G}, \mathrm{W} 1, \mathrm{~W} 2)$ computes the controller using the specified precompensator weight W 1 and post-compensator weight W 2 .
[K,CL,gamma,info] = ncfsyn(G,W1,W2,'ref') computes the controller with a reference command, as in the system of the following illustration.

When you use this syntax, the closed-loop system CL represents the response from [$\left.w_{1} ; w_{2} ; r e f\right]$ to $\left[z_{1}\right.$; z_{2}].

Examples

Loop Shaping With ncfsyn

The following code shows how ncfsyn can be used for loop-shaping.

```
s = zpk('s');
G = (s-1)/(s+1)^2;
W1 = 0.5/s;
[K,CL,GAM] = ncfsyn(G,W1);
sigma(G*K,'r',G*W1,'r-.',G*W1*GAM,'k-.',G*W1/GAM,'k-.')
```


The singular value plot of the achieved loop $\mathrm{G} * \mathrm{~K}$ is equal to that of the target loop $\mathrm{G} * \mathrm{~W} 1$ to within plus or minus GAM (in dB).

Input Arguments

G - Plant
dynamic system model
Plant, specified as a dynamic system model such as a state-space (ss) model. If G is a generalized state-space model with uncertain or tunable control design blocks, then ncfsyn uses the nominal or current value of those elements. G must have the same number of inputs and outputs.

W1 - Pre-compensator weight
 eye(N) (default) | LTI model

Pre-compensator weight, specified as:

- Identity matrix eye (N), where N is the number of inputs or outputs in G.
- SISO minimum-phase LTI model. In this case, ncfsyn uses the same weight for every loop channel.
- MIMO minimum-phase LTI model of the same I/O dimensions as G.

Select a pre-compensator and post-compensator weights W_{1} and W_{2} such that the gain of the shaped plant $G_{s}=W_{2} G W_{1}$ is sufficiently high at frequencies where good disturbance attenuation is required, and sufficiently low at frequencies where good robust stability is required.

W2 - Post-compensator weight

I (default) | LTI model
Post-compensator weight, specified as the identity matrix eye(N) or a SISO or MIMO LTI model. The considerations for specifying W2 are the same as those for W1.

Output Arguments

$\mathrm{K}-\boldsymbol{H}_{\infty}$-optimal loop-shaping controller

state-space (ss) model
H_{∞}-optimal loop-shaping controller, returned as a state-space (ss) model with the same I/O dimensions as G . The optimal controller $K=W_{1} K_{s} W_{2}$. See "Algorithms" on page 1-376.

CL - Optimal closed-loop system

state-space (ss) model
Optimal closed-loop system from the disturbances w_{1} and w_{2} to the outputs z_{1} and z_{2}, returned as a state-space model. The closed-loop system is given by:

$$
\left[\begin{array}{c}
I \\
K
\end{array}\right](I-G K)^{-1}[I, G] .
$$

gamma - \boldsymbol{H}_{∞} optimal cost

positive scalar value
H_{∞} optimal cost, returned as a positive scalar value greater than 1. The optimal cost is
hinfnorm (CL). The optimal controller K_{s} is such that the singular-value plot of the shaped loop $L_{s}=$ $W_{2} G W_{1} K_{s}$ optimally matches the target loop shape G_{s} to within a factor of gamma.
gamma is related to the normalized coprime stability margin of the system by gamma = 1/ ncfmargin (Gs,-K). Thus, gamma gives a good indication of robustness of stability to a wide class of unstructured plant variations, with values in the range $1<$ gamma < 3 corresponding to satisfactory stability margins for most typical control system designs.

info - Additional information

structure

- emax - nugap robustness metric, emax = 1/ gamma (see gapmetric)
- Gs - Shaped plant $G_{s}=W_{2} G W_{1}$
- Ks - Optimal controller for shaped plant Gs. The final controller is $K=W_{1} K_{s} W_{2}$. See "Algorithms" on page 1-376 for details.

Tips

- While ncfmargin assumes a negative-feedback loop, the ncfsyn command designs a controller for a positive-feedback loop. Therefore, to compute the margin using a controller designed with ncfsyn, use [marg,freq] = ncfmargin(G,K,+1).

Algorithms

The returned controller $K=W_{1} K_{s} W_{2}$, where K_{s} is an optimal H_{∞} controller that minimizes the H_{∞} cost

$$
\gamma\left(K_{S}\right)=\left\|\left[\begin{array}{c}
I \\
K_{S}
\end{array}\right]\left(I-G_{S} K_{S}\right)^{-1}\left[I, G_{S}\right]\right\|_{\infty}=\left\|\left[\begin{array}{c}
I \\
G_{S}
\end{array}\right]\left(I-K_{S} G_{S}\right)^{-1}\left[I, K_{S}\right]\right\|_{\infty} .
$$

The optimal performance is the minimal cost

$$
\gamma:=\min _{K_{S}} \gamma\left(K_{S}\right) .
$$

Suppose that $G_{s}=N M^{-1}$, where $N(j \omega)^{*} N(j \omega)+M(j \omega)^{*} M(j \omega)=I$, is a normalized coprime factorization (NCF) of the weighted plant model G_{s}. Then, theory ensures that the control system remains robustly stable for any perturbation \tilde{G}_{s} to G_{s} of the form

$$
\tilde{G}_{s}=\left(N+\Delta_{1}\right)\left(M+\Delta_{2}\right)^{-1}
$$

where Δ_{1}, Δ_{2} are a stable pair satisfying

$$
\left\|\left[\begin{array}{l}
\Delta_{1} \\
\Delta_{2}
\end{array}\right]\right\|_{\infty}<M A R G:=\frac{1}{\gamma} .
$$

The closed-loop H_{∞}-norm objective has the standard signal gain interpretation. Finally it can be shown that the controller, K_{s}, does not substantially affect the loop shape in frequencies where the gain of $W_{2} G W_{1}$ is either high or low, and will guarantee satisfactory stability margins in the frequency region of gain cross-over. In the regulator set-up, the final controller to be implemented is $K=W_{1} K_{s} W_{2}$.

See McFarlane and Glover [1]-[2] for details.

References

[1] McFarlane, D.C., and K. Glover, Robust Controller Design using Normalised Coprime Factor Plant Descriptions, Springer Verlag, Lecture Notes in Control and Information Sciences, vol. 138, 1989.
[2] McFarlane, D.C., and K. Glover, "A Loop Shaping Design Procedure using Synthesis," IEEE Transactions on Automatic Control, vol. 37, no. 6, pp. 759-769, June 1992.
[3] Vinnicombe, G., "Measuring Robustness of Feedback Systems," PhD dissertation, Department of Engineering, University of Cambridge, 1993.
[4] Zhou, K., and J.C. Doyle, Essentials of Robust Control. NY: Prentice-Hall, 1998.

See Also

gapmetric| hinfsyn| loopsyn|ncfmargin

Introduced before R2006a

newlmi

Attach identifying tag to LMIs

Syntax

tag $=$ newlmi

Description

newlmi adds a new LMI to the LMI system currently described and returns an identifier tag for this LMI. This identifier can be used in lmiterm, showlmi, or dellmi commands to refer to the newly declared LMI. Tagging LMIs is optional and only meant to facilitate code development and readability.

Identifiers can be given mnemonic names to help keep track of the various LMIs. Their value is simply the ranking of each LMI in the system (in the order of declaration). They prove useful when some LMIs are deleted from the LMI system. In such cases, the identifiers are the safest means of referring to the remaining LMIs.

See Also

dellmi |getlmis|lmiedit|lmiterm|lmivar|setlmis
Introduced before R2006a

normalized2actual

Convert value for atom in normalized coordinates to corresponding actual value

Syntax

avalue = normalized2actual(A,NV)

Description

Converts a normalized value NV of an atom to its corresponding actual (unnormalized) value.
If $N V$ is an array of values, then avalue will be an array of the same dimension.

Examples

Create uncertain real parameters with a range that is symmetric about the nominal value, where each endpoint is 1 unit from the nominal. Points that lie inside the range are less than 1 unit from the nominal, while points that lie outside the range are greater than 1 unit from the nominal.

```
a = ureal('a',3,'range',[1 5]);
actual2normalized(a,[l 3 5])
ans =
    -1.0000 -0.0000 1.0000
normalized2actual(a,[-1 1])
ans =
    1.0000 5.0000
normalized2actual(a,[-1.5 1.5])
ans =
    0.0000 6.0000
```


See Also

```
actual2normalized | getLimits | robgain | robstab |uscale
Introduced before R2006a
```


pdlstab

Assess robust stability of polytopic or parameter-dependent system

Syntax

[tau, Q0, Q1,...] = pdlstab(pds,options)

Description

pdlstab uses parameter-dependent Lyapunov functions to establish the stability of uncertain statespace models over some parameter range or polytope of systems. Only sufficient conditions for the existence of such Lyapunov functions are available in general. Nevertheless, the resulting robust stability tests are always less conservative than quadratic stability tests when the parameters are either time-invariant or slowly varying.

For an affine parameter-dependent system
$E(p) x^{*}=A(p) x+B(p) u$
$y=C(p) x+D(p) u$
with $p=\left(p_{1}, \ldots, p_{n}\right) \in R^{n}$, pdlstab seeks a Lyapunov function of the form
$V(x p)=,x^{T} Q(p)-1 x, Q(p)=Q_{0}+p_{1} Q_{1}+\ldots p_{n} Q_{n}$
such that $d V(x, p) / d t<0$ along all admissible parameter trajectories. The system description pds is specified with psys and contains information about the range of values and rate of variation of each parameter p_{i}.

For a time-invariant polytopic system

$$
\begin{gathered}
E x=A x+B u \\
y=C x+D u
\end{gathered}
$$

with

$$
\left(\begin{array}{cc}
A+j E & B \tag{1-14}\\
C & D
\end{array}\right)=\sum_{i=1}^{n} \alpha_{i}\left(\begin{array}{cc}
A+j E_{i} & B_{i} \\
C_{i} & D_{i}
\end{array}\right), \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i}=1
$$

pdlstab seeks a Lyapunov function of the form
$V(x, \alpha)=x^{T} Q(\alpha)-1 x, Q(\alpha)=\alpha_{1} Q_{1}+\ldots+\alpha_{n} Q_{n}$
such that $d V(x, \alpha) / d t<0$ for all polytopic decompositions of the form "Equation 1-14".
Several options and control parameters are accessible through the optional argument options:

- Setting options (1)=0 tests robust stability (default)
- When options (2)=0, pdlstab uses simplified sufficient conditions for faster running times. Set options(2)=1 to use the least conservative conditions

Tips

For affine parameter-dependent systems with time-invariant parameters, there is equivalence between the robust stability of
$E(p) \dot{x}=A(p) x$
and that of the dual system
$E(p)^{T} \dot{z}=A(p)^{T} z$
However, the second system may admit an affine parameter-dependent Lyapunov function while the first does not.

In such case, pdlstab automatically restarts and tests stability on the dual system "Equation 1-16" when it fails on "Equation 1-15".

See Also
 quadstab

Introduced before R2006a

pdsimul

Time response of parameter-dependent system along given parameter trajectory

Syntax

pdsimul(pds,'traj',tf,'ut',xi,options)
$[t, x, y]=$ pdsimul(pds,pv,'traj',tf,'ut',xi,options)

Description

pdsimul simulates the time response of an affine parameter-dependent system

$$
\begin{gathered}
E(p) x^{\prime}=A(p) x+B(p) u \\
y=C(p) x+D(p) u
\end{gathered}
$$

along a parameter trajectory $p(t)$ and for an input signal $u(t)$. The parameter trajectory and input signals are specified by two time functions $p=t r a j(t)$ and $u=u t(t)$. If ' $u t$ ' is omitted, the response to a step input is computed by default.

The affine system pds is specified with psys. The function pdsimul also accepts the polytopic representation of such systems as returned by aff2pol(pds) or hinfgs. The final time and initial state vector can be reset through tf and xi (their respective default values are 5 seconds and 0). Finally, options gives access to the parameters controlling the ODE integration (type help gear for details).

When invoked without output arguments, pdsimul plots the output trajectories $y(t)$. Otherwise, it returns the vector of integration time points t as well as the state and output trajectories x, y.

See Also

psys | pvec

Introduced before R2006a

plot

Visualize gain and phase uncertainty of a umargin block

Syntax

plot(ublk)

Description

plot (ublk) generates a two-axis plot visualizing the gain and phase uncertainty modeled by a umargin block. The plot shows:

- The ranges of modeled gain and phase uncertainty. The plot shows the maximum gain-only variation, the maximum phase-only variation, and a shaded region containing the simultaneous gain and phase variations represented by ublk.
- The disk of values taken by the dynamic, multiplicative factor $F(s)$ that models the gain and phase uncertainty. For SISO loops, this factor changes the open-loop response L to $L^{*} F$. For more information about the disk model of uncertainty, see "Stability Analysis Using Disk Margins".

Examples

Visualize Gain and Phase Variations and Uncertainty Disk of umargin Block

Create a umargin block that models gain that can decrease by 10% but increase by 60% in the absence of phase variation, and a phase variation of $\pm 15^{\circ}$ in the absence of gain variation.

```
DGM = getDGM([0.9,1.6],[-15,15],'tight');
F = umargin('F',DGM)
F =
    Uncertain gain/phase "F" with relative gain change in [0.86,1.6] and phase change of }\pm15\mathrm{ degre
```

Visualize the corresponding uncertainty disk and the ranges of gain and phase variations modeled by F.

```
plot(F)
```


The left-hand plot shows:

- The range of modeled gain variations, in the absence of phase variation. This range is shown along the x-axis, given by DGM $=$ [0.861 .6], or about -1.3 dB to 4 dB .
- The range of modeled phase variations in the absence of gain variations. This value is shown along the y-axis where the gain variation is 0 dB , or $\pm 15^{\circ}$.
- A shaded region that shows the simultaneous gain and phase variations included in the model. For instance, if the gain increases by about 1 dB , the phase can vary by as much as about $\pm 17^{\circ}$.

The right-hand plot shows the disk of relative change in the open-loop response L. The umargin block models gain and phase uncertainty as an arbitrary multiplicative factor $F(s)$ whose Nyquist curve lies entirely within this disk. The gain and phase uncertainty perturbs the open-loop response $L(s)$ to $L(s) F(s)$. For more details about this uncertainty model, see umargin and "Stability Analysis Using Disk Margins".

Input Arguments

ublk - umargin block
umargin block
umargin block to visualize.

See Also
diskmarginplot | umargin
Topics
"Stability Analysis Using Disk Margins"
Introduced in R2020a

polydec

Compute polytopic coordinates with respect to box corners

Syntax

vertx = polydec(PV)
$[C$, vertx] $=$ polydec (PV, P)

Description

vertx $=$ polydec (PV) takes an uncertain parameter vector PV taking values ranging in a box, and returns the corners or vertices of the box as columns of the matrix vertx.
$[C$, vertx] $=\operatorname{polydec}(P V, P)$ takes an uncertain parameter vector $P V$ and a value P of the parameter vector $P V$, and returns the convex decomposition C of P over the set VERTX of box corners:

```
P = c1*VERTX(:,1) + ... + cn*VERTX(:,n)
cj >=0 , c1 + ... + cn = 1
```

The list vertx of corners can be obtained directly by typing
vertx = polydec(PV)

See Also

aff2pol|hinfgs|pvec|pvinfo
Introduced before R2006a

popov

Perform Popov robust stability test

Syntax

$[t, P, S, N]=\operatorname{popov}(s y s, d e l t a, f l a g)$

Description

popov uses the Popov criterion to test the robust stability of dynamical systems with possibly nonlinear and/or time-varying uncertainty. The uncertain system must be described as the interconnection of a nominal LTI system sys and some uncertainty delta.

The command

```
[t,P,S,N] = popov(sys,delta)
```

tests the robust stability of this interconnection. Robust stability is guaranteed if $t<0$. Then P determines the quadratic part $x^{T} P x$ of the Lyapunov function and D and S are the Popov multipliers.

If the uncertainty delta contains real parameter blocks, the conservatism of the Popov criterion can be reduced by first performing a simple loop transformation. To use this refined test, call popov with the syntax

```
[t,P,S,N] = popov(sys,delta,1)
```


See Also

pdlstab|quadstab
Introduced before R2006a

psinfo

Inquire about polytopic or parameter-dependent systems created with psys

Syntax

```
psinfo(ps)
[type,k,ns,ni,no] = psinfo(ps)
pv = psinfo(ps,'par')
sk = psinfo(ps,'sys',k)
sys = psinfo(ps,'eval',p)
```


Description

psinfo is a multi-usage function for queries about a polytopic or parameter-dependent system ps created with psys. It performs the following operations depending on the calling sequence:

- psinfo(ps) displays the type of system (affine or polytopic); the number k of SYSTEM matrices involved in its definition; and the numbers of ns, ni, no of states, inputs, and outputs of the system. This information can be optionally stored in MATLAB variables by providing output arguments.
- $\mathrm{pv}=\mathrm{psinfo}(\mathrm{ps}$, 'par') returns the parameter vector description (for parameter-dependent systems only).
- $s k=p s i n f o(p s, ' s y s ', k)$ returns the k-th SYSTEM matrix involved in the definition of $p s$. The ranking k is relative to the list of systems syslist used in psys.
- sys $=\mathrm{psinfo}(\mathrm{ps}$, 'eval', p$)$ instantiates the system for a given vector p of parameter values or polytopic coordinates.

For affine parameter-dependent systems defined by the SYSTEM matrices $S_{0}, S_{1}, \ldots, S_{n}$, the entries of p should be real parameter values p_{1}, \ldots, p_{n} and the result is the LTI system of SYSTEM matrix
$S(p) \quad=\quad S_{0}+\quad p_{1} S_{1}+\quad . \quad . \quad . \quad p_{n} S_{n}$
For polytopic systems with SYSTEM matrix ranging in
$\operatorname{Co}\left\{S_{1}, \quad . \quad . \quad S_{\mathrm{n}}\right\}$,
the entries of \mathbf{p} should be polytopic coordinates p_{1}, \ldots, p_{n} satisfying $p_{j} \geq 0$ and the result is the interpolated LTI system of SYSTEM matrix

$$
S=\frac{p_{1} S_{1}+\cdots+p_{n} S_{n}}{p_{1}+\cdots+p_{n}}
$$

See Also

psys

Introduced before R2006a

psys

Specify polytopic or parameter-dependent linear systems

Syntax

```
pols = psys(syslist)
affs = psys(pv,syslist)
```


Description

psys specifies state-space models where the state-space matrices can be uncertain, time-varying, or parameter-dependent.
psys supports two types of uncertain state-space models:

- Polytopic systems

$E(t)$	x^{*}		$A(t) x$	+	$B(t) u$	
y	$=$	$C(t) x$		+		$D(t) u$

whose SYSTEM matrix takes values in a fixed polytope:

$$
\left[\begin{array}{cc}
A(t)+j E(t) & B(t) \\
C(t) & D(t)
\end{array}\right] \in \operatorname{Co}\left\{\left[\begin{array}{cc}
A_{1}+j E_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right], \ldots,\left[\begin{array}{cc}
A k+j E_{k} & B_{k} \\
C_{k} & C_{k} \\
S_{k} &
\end{array}\right]\right\}
$$

where S_{1}, \ldots, S_{k} are given "vertex" systems and

$$
\operatorname{Co}\left\{S_{1}, \ldots, S_{k}\right\}=\left\{\sum_{i=1}^{k} \alpha_{i} S_{i}: \alpha_{i} \geq 0, \sum_{i=1}^{k} \alpha_{i}=1\right\}
$$

denotes the convex hull of S_{1}, \ldots, S_{k} (polytope of matrices with vertices S_{1}, \ldots, S_{k})

- Affine parameter-dependent systems

$E(p) \chi^{\cdot}$	$=$	$A(p) x$	+	$B(p) u$
y	$=$	$C(p) x$	+	$D(p) u$

where $A(\cdot) ; B(\cdot), \ldots, E(\cdot)$ are fixed affine functions of some vector $p=\left(p_{1}, \ldots, p_{n}\right)$ of real parameters, i.e.,

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
A(p)+j E(p) & B(p) \\
\quad C(p) & D(p)
\end{array}\right]=} \\
& {\left[\begin{array}{ccc}
A_{0}+j E_{0} & B_{0} \\
C_{0} & D_{0}
\end{array}\right]+p 1\left[\begin{array}{cc}
A_{1}+j E_{1} & B_{1} \\
C_{0} & C_{1} \\
S_{1} & D_{1}
\end{array}\right]+\ldots+p_{n}\left[\begin{array}{cc}
A_{n}+j E_{n} & B_{n} \\
C_{n} & D_{n}
\end{array}\right]}
\end{aligned}
$$

where $S_{0}, S_{1}, \ldots, S_{n}$ are given SYSTEM matrices. The parameters p_{i} can be time-varying or constant but uncertain.

The argument syslist lists the SYSTEM matrices S_{i} characterizing the polytopic value set or parameter dependence. In addition, the description pv of the parameter vector (range of values and rate of variation) is required for affine parameter- dependent models (see pvec for details). Thus, a polytopic model with vertex systems S_{1}, \ldots, S_{4} is created by
pols = psys([s1,s2,s3,s4])
while an affine parameter-dependent model with 4 real parameters is defined by
affs $=$ psys(pv,[s0,s1,s2,s3,s4])
The output is a structured matrix storing all the relevant information.

See Also

aff2pol|psinfo|pvec

Introduced before R2006a

pvec

Specify range and rate of variation of uncertain or time-varying parameters

Syntax

```
pv = pvec('box',range,rates)
pv = pvec('pol',vertices)
```


Description

pvec is used in conjunction with psys to specify parameter-dependent systems. Such systems are parametrized by a vector $p=\left(p_{1}, \ldots, p_{n}\right)$ of uncertain or time-varying real parameters p_{i}. The function pvec defines the range of values and the rates of variation of these parameters.

The type 'box' corresponds to independent parameters ranging in intervals

$$
\underline{p}_{j} \leq p_{j} \leq \bar{p}_{j}
$$

The parameter vector p then takes values in a hyperrectangle of R^{n} called the parameter box. The second argument range is an n-by- 2 matrix that stacks up the extremal values \underline{p}_{j} and \bar{p}_{j} of each p_{j}. If the third argument rates is omitted, all parameters are assumed time-invariant. Otherwise, rates is also an n-by- 2 matrix and its j-th row specifies lower and upper bounds $\underline{\nu}_{j}$ and $\bar{\nu}_{j}$ on $\frac{d p_{j}}{d t}$:

$$
\underline{\nu}_{j} \leq \frac{d p_{j}}{d t} \leq \bar{\nu}_{j}
$$

Set $\underline{\nu}_{j}=-\operatorname{Inf}$ and $\bar{\nu}_{j}=$ Inf if $p_{j}(t)$ can vary arbitrarily fast or discontinuously.
The type 'pol ' corresponds to parameter vectors p ranging in a polytope of the parameter space R^{n}. This polytope is defined by a set of vertices V_{1}, \ldots, V_{n} corresponding to "extremal" values of the vector p. Such parameter vectors are declared by the command

```
pv = pvec('pol',[v1,v2, . . ., vn])
```

where the second argument is the concatenation of the vectors $\mathrm{v} 1, \ldots, \mathrm{vn}$.
The output argument pv is a structured matrix storing the parameter vector description. Use pvinfo to read the contents of pv .

Examples

Consider a problem with two time-invariant parameters
p_{1}
ϵ
[-1,
2],
p_{2}
ϵ
[20,

50]
The corresponding parameter vector $p=\left(p_{1}, p_{2}\right)$ is specified by
pv = pvec('box',[-1 2;20 50])

Alternatively, this vector can be regarded as taking values in the rectangle drawn in the following figure. The four corners of this rectangle are the four vectors

$$
v_{1}=\binom{-1}{20}, v_{2}=\binom{-1}{50}, v_{3}=\binom{2}{20}, v_{4}=\binom{2}{50}
$$

Hence, you could also specify p by
pv = pvec('pol',[v1,v2,v3,v4])

Parameter box

See Also

psys|pvinfo
Introduced before R2006a

pvinfo

Describe parameter vector specified with pvec

Syntax

```
[typ,k,nv] = pvinfo(pv)
[pmin,pmax,dpmin,dpmax] = pvinfo(pv,'par',j)
vj = pvinfo(pv,'par',j)
p = pvinfo(pv,'eval',c)
```


Description

pvinfo retrieves information about a vector $p=\left(p_{1}, \ldots, p_{n}\right)$ of real parameters declared with pvec and stored in pv . The command $\mathrm{pvinfo}(\mathrm{pv})$ displays the type of parameter vector ('box' or ' pol'), the number n of scalar parameters, and for the type 'pol', the number of vertices used to specify the parameter range.

For the type 'box':

```
[pmin,pmax,dpmin,dpmax] = pvinfo(pv,'par',j)
```

returns the bounds on the value and rate of variations of the j-th real parameter p_{j}. Specifically,

$$
p \min \leq p_{j}(t) \leq p \max , d p \min \leq \frac{d p_{j}}{d t} \leq d p \max
$$

For the type 'pol':

```
pvinfo(pv,'par',j)
```

returns the j-th vertex of the polytope of R^{n} in which p ranges, while

```
pvinfo(pv,'eval',c)
```

returns the value of the parameter vector p given its barycentric coordinates c with respect to the polytope vertices (V_{1}, \ldots, V_{k}). The vector c must be of length k and have nonnegative entries. The corresponding value of p is then given by

$$
p=\frac{\sum_{i=1}^{k} c_{i} V_{i}}{\sum_{i=1}^{k} c_{i}}
$$

See Also

psys |pvec
Introduced before R2006a

quadperf

Compute quadratic H_{∞} performance of polytopic or parameter-dependent system

Syntax

[perf, P] = quadperf(ps,g,options)

Description

The RMS gain of the time-varying system
$E(t) \dot{x}=A(t) x+B(t) u, \quad y=C(t) X+D(t) u$
is the smallest $\gamma>0$ such that
$\|y\|_{L_{2}} \leq \gamma\|u\|_{L_{2}}$
for all input $u(t)$ with bounded energy. A sufficient condition for "Equation 1-18" is the existence of a quadratic Lyapunov function
$\begin{array}{ccccc}\mathrm{V}(x) & x^{T} P x, & P & > & 0\end{array}$
such that

$$
\forall u \in L_{2}, \frac{d V}{d t}+y^{T} y-\gamma^{2} u^{T} u<0
$$

Minimizing γ over such quadratic Lyapunov functions yields the quadratic H_{∞} performance, an upper bound on the true RMS gain.

The command

```
[perf,P] = quadperf(ps)
```

computes the quadratic H_{∞} performance perf when "Equation 1-17" is a polytopic or affine parameter-dependent system ps (see psys). The Lyapunov matrix P yielding the performance perf is returned in P .

The optional input options gives access to the following task and control parameters:

- If options (1)=1, perf is the largest portion of the parameter box where the quadratic RMS gain remains smaller than the positive value g (for affine parameter-dependent systems only). The default value is 0 .
- If options (2)=1, quadperf uses the least conservative quadratic performance test. The default is options (2)=0 (fast mode)
- options(3) is a user-specified upper bound on the condition number of P (the default is 109).

See Also

psys |quadstab

Introduced before R2006a

quadstab

Quadratic stability of polytopic or affine parameter-dependent systems

Syntax

[tau, P] = quadstab(ps,options)

Description

For affine parameter-dependent systems
$E(p) x^{.} \quad=\quad A(p) x, \quad p(t) \quad=\quad\left(p_{1}(t), \quad . \quad . \quad ., \quad p_{n}(t)\right)$
or polytopic systems
$E(t) \chi^{\cdot}=A(t) x, \quad(A, \quad E) \quad \epsilon \quad \operatorname{Co}\left\{\left(A_{1}, \quad E_{1}\right), \quad . \quad . \quad . \quad\left(A_{n}, \quad E_{n}\right)\right\}$,
quadstab seeks a fixed Lyapunov function $\mathrm{V}(x)=x^{T} P x$ with $P>0$ that establishes quadratic stability. The affine or polytopic model is described by ps (see psys).

The task performed by quadstab is selected by options(1):

- if options (1)=0(default), quadstab assesses quadratic stability by solving the LMI problem Minimize τ over $Q=Q^{T}$ such that

$A^{T} Q E$	+	$E Q A^{T}$	$<$	тI	for	all	admissible	values	of	(A,	E)
						$>$					

The global minimum of this problem is returned in tau and the system is quadratically stable if tau <0.

- if options $(1)=1$, quadstab computes the largest portion of the specified parameter range where quadratic stability holds (only available for affine models). Specifically, if each parameter p_{i} varies in the interval

$$
p_{i} \in\left[p_{i 0}-\delta_{i}, p_{i 0}+\delta_{i}\right]
$$

quadstab computes the largest $\Theta>0$ such that quadratic stability holds over the parameter box

$$
p_{i} \in\left[p_{i 0}-\Theta \delta_{i}, p_{i 0}+\Theta \delta_{i}\right]
$$

This "quadratic stability margin" is returned in tau and ps is quadratically stable if tau ≥ 1.
Given the solution $Q_{\text {opt }}$ of the LMI optimization, the Lyapunov matrix P is given by $P=Q_{\text {opt }}^{-1}$. This matrix is returned in P.

Other control parameters can be accessed through options(2) and options(3):

- if options (2)=0 (default), quadstab runs in fast mode, using the least expensive sufficient conditions. Set options (2)=1 to use the least conservative conditions
- options(3) is a bound on the condition number of the Lyapunov matrix P. The default is 10^{9}.

See Also

decay|pdlstab|psys|quadperf
Introduced before R2006a

randatom

Generate random uncertain atom objects

Syntax

$A=$ randatom(Type)
A = randatom(Type,sz)
$\mathrm{A}=$ randatom

Description

A = randatom(Type) generates a 1-by-1 type uncertain object. Valid values for Type include 'ureal', 'ultidyn', 'ucomplex', and 'ucomplexm'.
$\mathrm{A}=$ randatom(Type, sz) generates an $\mathrm{sz}(1)-$ by-sz(2) uncertain object. Valid values for Type include 'ultidyn' or 'ucomplexm'. If Type is set to 'ureal' or 'ucomplex', the size variable is ignored and A is a 1-by-1 uncertain object.
$A=$ randatom, where randatom has no input arguments, results in a 1 -by- 1 uncertain object. The class is of this object is randomly selected between 'ureal','ultidyn' and 'ucomplex'.

In general, both rand and randn are used internally. You can control the result of randatom by setting seeds for both random number generators before calling the function.

Examples

The following statement creates the ureal uncertain object xr . Note that your display can differ because a random seed is used.

```
xr = randatom('ureal')
xr =
    Uncertain real parameter "NMGXC" with nominal value 5.34 and variability [-2.99,1.92].
```

The following statement creates the variable ultidyn uncertain object $x l t i$ with three inputs and four outputs. You will get the results shown below if you set the random variable seed to 29 .

```
rng(29,'twister');
xlti = randatom('ultidyn',[4 3])
xlti =
    Uncertain LTI dynamics "LOSWT" with 4 outputs, 3 inputs, and gain less than 0.293.
```


See Also

rand | randn | randumat | randuss |ucomplex|ucomplexm|ultidyn

Introduced before R2006a

randumat

Generate random uncertain umat objects

Syntax

```
um = randumat(ny,nu)
um = randumat
```


Description

um = randumat(ny,nu) generates an uncertain matrix of size ny-by-nu. randumat randomly selects from uncertain atoms of type 'ureal', 'ultidyn', and 'ucomplex'.
um = randumat results in a 1-by-1 umat uncertain object, including up to four uncertain objects.

Examples

The following statement creates the umat uncertain object x1 of size 2-by-3. Note that your result can differ because a random seed is used.

```
x1 = randumat (2,3)
x1 =
    Uncertain matrix with 2 rows and 3 columns.
    The uncertainty consists of the following blocks:
        AWYRT: Uncertain real, nominal = 7.09, variability = [-7.84,16.4]%, 2 occurrences
        HRRED: Uncertain complex, nominal = 3.14+5.47i, radius = 1.92, 1 occurrences
        VSIYA: Uncertain real, nominal = -4.05, variability = [-1.53,3.83], 3 occurrences
        YZEZY: Uncertain complex, nominal = -6.54-2.17i, variability = 24%, 1 occurrences
Type "xl.NominalValue" to see the nominal value, "get(xl)" to see all properties, and
"xl.Uncertainty" to interact with the uncertain elements.
```

The following statement creates the umat uncertain object $\times 2$ of size 4 -by- 2 with the seed 91 .

```
rng(91,'twister');
x2 = randumat (4,2)
x2 =
    Uncertain matrix with 4 rows and 2 columns.
    The uncertainty consists of the following blocks:
        YQZBI: Uncertain complex, nominal = 3.61+1.88i, radius = 1.42, 1 occurrences
Type "x2.NominalValue" to see the nominal value, "get(x2)" to see all properties,
and "x2.Uncertainty" to interact with the uncertain elements.
```


See Also

rand | randatom | randn | randuss | ucomplex | ultidyn

Introduced before R2006a

randuss

Generate stable, random uss objects

Syntax

```
usys = randuss(n)
usys = randuss(n,p)
usys = randuss(n,p,m)
usys = randuss(n, p,m,Ts)
usys = randuss
```


Description

usys $=$ randuss (n) generates an nth order single-input/single-output uncertain continuous-time system. randuss randomly selects from uncertain atoms of type 'ureal', 'ultidyn', and 'ucomplex'.
usys = randuss(n, p) generates an nth order single-input uncertain continuous-time system with p outputs.
usys $=$ randuss (n, p, m) generates an nth order uncertain continuous-time system with p outputs and m inputs.
usys $=$ randuss ($n, p, m, T s$) generates an nth order uncertain discrete-time system with p outputs and m inputs. The sample time is Ts.
usys $=$ randuss (without arguments) results in a 1-by-1 uncertain continuous-time uss object with up to four uncertain objects.

In general, both rand and randn are used internally. You can control the result of randuss by setting seeds for both random number generators before calling the function.

Examples

The statement creates a fifth order, continuous-time uncertain system s1 of size 2-by-3. Note your display can differ because a random seed is used.

```
s1 = randuss(5,2,3)
USS: 5 States, 2 Outputs, 3 Inputs, Continuous System
    CTPQV: 1x1 LTI, max. gain = 2.2, 1 occurrence
    IGDHN: real, nominal = -4.03, variability =
[-3.74667 22.7816]%, 1 occurrence
    MLGCD: complex, nominal = 8.36+3.09i, +/- 7.07%, 1 occurrence
    OEDJK: complex, nominal = -0.346-0.296i, radius = 0.895,
1 occurrence
```


See Also

rand | randatom | randn | randumat | ucomplex | ultidyn

Introduced before R2006a

reduce

Simplified access to Hankel singular value based model reduction functions

Syntax

```
GRED = reduce(G)
GRED = reduce(G,order)
[GRED,redinfo] = reduce(G,'key1','value1',...)
[GRED,redinfo] = reduce(G,order,'key1','value1',...)
```


Description

reduce returns a reduced order model GRED of G and a struct array redinfo containing the error bound of the reduced model, Hankel singular values of the original system and some other relevant model reduction information.

An error bound is a measure of how close GRED is to G and is computed based on either additive error, $\|$ G-GRED $\|_{\infty}$, multiplicative error, $\| \mathrm{G}^{-1}$ (G-GRED) $\|_{\infty}$, or nugap error (ref.: ncfmr) [1],[4],[5].

Hankel singular values of a stable system indicate the respective state energy of the system. Hence, reduced order can be directly determined by examining the system Hankel SV's. Model reduction routines, which based on Hankel singular values are grouped by their error bound types. In many cases, the additive error method GRED=reduce ($G, O R D E R$) is adequate to provide a good reduced order model. But for systems with lightly damped poles and/or zeros, a multiplicative error method (namely, GRED=reduce (G, ORDER,'ErrorType','mult')) that minimizes the relative error between G and GRED tends to produce a better fit.

This table describes input arguments for reduce.

Argument	Description
G	LTI model to be reduced (without any other inputs will plot its Hankel singular values and prompt for reduced order).
ORDER	(Optional) Integer for the desired order of the reduced model, or optionally a vector packed with desired orders for batch runs.

[^1]| Argument | Value | Description |
| :---: | :---: | :---: |
| 'Algorithm' | 'balance'
 'schur'
 'hankel'
 'bst'
 'ncf' | ```Default for 'add' (balancmr) Option for 'add ' (schurmr) Option for 'add ' (hankelmr) Default for 'mult' (bstmr) Default for 'ncf' (ncfmr)``` |
| 'ErrorType' | $\begin{aligned} & \text { 'add' } \\ & \text { 'mult' } \\ & \text { 'ncf' } \end{aligned}$ | Additive error (default)
 Multiplicative error at model output
 NCF nugap error |
| 'MaxError' | A real number or a vector of different errors | Reduce to achieve H_{∞} error.
 When present, 'MaxError' overrides ORDER input. |
| 'Weights' | \{Wout, Win \} cell array | Optimal 1x2 cell array of LTI weights Wout (output) and Win (input); default is both identity; used only with 'ErrorType', 'add'. Weights must be invertible. |
| 'Display' | 'on' or 'off' | Display Hankel singular plots (default 'off'). |
| 'Order' | Integer, vector or cell array | Order of reduced model. Use only if not specified as 2nd argument. |

Weights on the original model input and/or output can make the model reduction algorithm focus on some frequency range of interests. But weights have to be stable, minimum phase and invertible.

This table describes output arguments.

Argument	Description
GRED	LTI reduced order model. Becomes multi-dimensional array when input is a serial of different model order array.

Argument	Description
REDINFO	A STRUCT array with 3 fields: - REDINFO.ErrorBound - REDINFO.StabSV - REDINFO.UnstabSV For 'hankel' algorithm, STRUCT array becomes: - REDINFO.ErrorBound - REDINFO.StabSV - REDINFO.UnstabSV - REDINFO.Ganticausal For 'ncf' option, STRUCT array becomes: - REDINFO.GL - REDINFO.GR - REDINFO.hsv

G can be stable or unstable. G and GRED can be either continuous or discrete.
A successful model reduction with a well-conditioned original model G will ensure that the reduced model GRED satisfies the infinity norm error bound.

Examples

Reduce Model Order

Given a continuous or discrete, stable or unstable system, G, create a set of reduced-order models based on your selections.

```
rng(1234,'twister'); % For reproducibility
G = rss(30,5,4);
```

If you call reduce without specifying an order for the reduced model, the software displays a Hankel singular-value plot and prompts you to select an order.

If you specify a reduced-model order, reduce defaults to the balancmr algorithm for model reduction.

```
[g1,redinfol] = reduce(G,20);
```

Specify other algorithms using the Algorithm argument. Use the ErrorType argument to specify whether the algorithm uses multiplicative or additive error, and the maximum permissible error in the reduced model.

```
[g2,redinfo2] = reduce(G,[10:2:18],'Algorithm','schur');
[g3,redinfo3] = reduce(G,'ErrorType','mult','MaxError',[0.01 0.05]);
[g4,redinfo4] = reduce(G,'ErrorType','add','Algorithm','hankel','MaxError',[0.01]);
for i = 1:4
    figure(i); eval(['sigma(G,g' num2str(i) ');']);
end
```


References

[1] K. Glover, "All Optimal Hankel Norm Approximation of Linear Multivariable Systems, and Their $\mathrm{L}_{\alpha}{ }^{-}$ error Bounds," Int. J. Control, vol. 39, no. 6, pp. 1145-1193, 1984.
[2] M. G. Safonov and R. Y. Chiang, "A Schur Method for Balanced Model Reduction," IEEE Trans. on Automat. Contr., vol. AC-2, no. 7, July 1989, pp. 729-733.
[3] M. G. Safonov, R. Y. Chiang and D. J. N. Limebeer, "Optimal Hankel Model Reduction for Nonminimal Systems," IEEE Trans. on Automat. Contr., vol. 35, No. 4, April, 1990, pp. 496-502.
[4] M. G. Safonov and R. Y. Chiang, "Model Reduction for Robust Control: A Schur Relative-Error Method," International Journal of Adaptive Control and Signal Processing, vol. 2, pp. 259-272, 1988.
[5] K. Zhou, "Frequency weighted L[[BULLET]] error bounds," Syst. Contr. Lett., Vol. 21, 115-125, 1993.

See Also

balancmr|bstmr|hankelmr|hankelsv|ncfmr|schurmr

Introduced before R2006a

repmat

Replicate and tile array

Syntax

$B=\operatorname{repmat}(A, M, N)$

Description

$B=\operatorname{repmat}(A, M, N)$ creates a large matrix B consisting of an M-by- N tiling of copies of A.
$B=\operatorname{repmat}(A,[M N])$ accomplishes the same result as repmat (A, M, N).
B = repmat (A, [M N P ...]) tiles the array A to produce an M-by-N-by-P-by-... block array. A can be N-D.
repmat ($\mathrm{A}, \mathrm{M}, \mathrm{N}$) for scalar A is commonly used to produce an M-by-N matrix filled with values of A .

Examples

Simple examples of using repmat are
repmat(randumat $(2,2), 2,3$)
repmat(ureal('A',6),[4 2])
Introduced before R2006a

rncf

Right normalized coprime factorization

Syntax

fact $=$ rncf(sys)
[fact,Mr,Nr] = rncf(sys)

Description

fact $=\operatorname{rncf}($ sys $)$ computes the right normalized coprime factorization of the dynamic system model sys. The factorization is given by:

$$
\text { sys }=N_{r} M_{r}^{-1}, \quad M_{r}^{*} M_{r}+N_{r}^{*} N_{r}=I .
$$

Here, M_{r}^{*} denotes the conjugate of M_{r} (see ctranspose). The returned model fact is a minimal state-space realization of the stable system [$M_{r} ; N_{r}$]. This factorization is used in other normalized coprime factor computations such as model reduction (ncfmr) and controller synthesis (ncfsyn).
[fact, $\mathrm{Mr}, \mathrm{Nr}]=\operatorname{rncf}(\mathrm{sys})$ also returns the coprime factors M_{r} and N_{r}.

Examples

Right Normalized Coprime Factorization of SISO System

Compute the right normalized coprime factorization of a SISO system.

```
sys = zpk([1 -1+2i -1-2i],[-1 2+1i 2-1i],1);
[fact,Mr,Nr] = rncf(sys);
```

Examine the original system and its factors.
sys
sys =
$(s-1)\left(s^{\wedge} 2+2 s+5\right)$
$(s+1) \quad\left(s^{\wedge} 2-4 s+5\right)$
Continuous-time zero/pole/gain model.

```
zpk(Mr)
```

ans =
$0.70711(s+1)\left(s^{\wedge} 2-4 s+5\right)$

$(s+1)\left(s^{\wedge} 2+3.162 s+5\right)$

Continuous-time zero/pole/gain model.

```
zpk(Nr)
ans =
    0.70711 (s-1) (s^2 + 2s + 5)
        (s+1) ( s^2 + 3.162s + 5)
```

Continuous-time zero/pole/gain model.

The numerators of the factors Mr and Nr are the denominator and numerator of sys, respectively. Thus, sys $=\mathrm{Nr} / \mathrm{Mr}$. rncf chooses the denominators of the factors such that the system [$\left.M_{r}(j \omega) ; N_{r}(j \omega)\right]$ is a unit vector at all frequencies. To confirm that property of the factorization, examine the singular values of fact, which is a stable minimal realization of $\left[M_{r}(j \omega) ; N_{r}(j \omega)\right]$.
sigma(fact)

Within a small numerical error, the singular value of fact is $1(0 \mathrm{~dB})$ at all frequencies.

Right Normalized Coprime Factorization of MIMO System

Compute the right normalized coprime factorization of a state-space model that has two outputs, two inputs, and three states.

```
rng(0); % for reproducibility
sys = rss(3,2,2);
[fact,Mr,Nr] = rncf(sys);
```

fact is a stable minimal realization of the factorization given by [Mr;Nr].

```
isstable(fact)
ans = logical
    1
```

Another property of fact is that its frequency response $F(j \omega)$ is an orthogonal matrix at all frequencies $\left(F(j \omega)^{\prime} F(j \omega)=I\right)$. Confirm this property by examining the singular values of fact. Within a small numerical error, the singular values are $1(0 \mathrm{~dB})$ at all frequencies.

```
sigma(fact)
```


Confirm that the factors satisfy sys $=\mathrm{Nr} / \mathrm{Mr}$ by examining the singular values of both.

```
sigma(sys,'b-',Nr/Mr,'r--')
```


Input Arguments

sys - Input system
dynamic system model
Input system to factorize, specified as a dynamic system model such as a state-space (ss) model. If sys is a generalized state-space model with uncertain or tunable control design blocks, then the function uses the nominal or current value of those elements. sys cannot be an frd model or a model with time delays.

Output Arguments

fact - Minimal realization of [Mr; Nr]

ss model
Minimal realization of [Mr ; Nr], returned as a state-space model. fact is stable and its frequency response is an orthogonal matrix at all frequencies. If sys has p outputs and m inputs, then fact has $\mathrm{m}+\mathrm{p}$ outputs and m inputs. fact has the same number of states as sys.

Mr, Nr - Right coprime factors

ss models
Right coprime factors of sys, returned as state-space models. If sys has poutputs and minputs, then:

- Mr has moutputs and m inputs.
- Nr has poutputs and m inputs.

Both factors have the same number of states as sys and the same A and B matrices as fact.

Tips

- fact is a minimal realization of [Mr;Nr]. If you need to use [Mr; Nr] or [$\mathrm{Mr} ; \mathrm{Nr}$] ' in a computation, it is better to use fact than to concatenate the factors yourself. Such manual concatenation results in extra (nonminimal) states, which can lead to decreased numerical accuracy.

See Also

lncf|ncfmr|ncfsyn
Introduced in R2019a

robgain

Robust performance of uncertain system

Syntax

[perfmarg,wcu] = robgain(usys,gamma)
[perfmarg,wcu] = robgain(usys,gamma,w)
[perfmarg,wcu] = robgain(\qquad ,opts)
[perfmarg,wcu,info] = robgain(\qquad)

Description

[perfmarg,wcu] = robgain(usys,gamma) calculates the robust performance margin for an uncertain system and the performance level gamma. The performance of usys is measured by its peak gain or peak singular value (see "Robustness and Worst-Case Analysis"). The performance margin is relative to the uncertainty level specified in usys. A margin greater than 1 means that the gain of usys remains below gamma for all values of the uncertainty modeled in usys. A margin less than 1 means that at some frequency, the gain of usys exceeds gamma for some values of the uncertain elements within their specified ranges. For example, a margin of 0.5 implies the following:

- The gain of usys remains below gamma as long as the uncertain element values stay within 0.5 normalized units of their nominal values.
- There is a perturbation of size 0.5 normalized units that drives the peak gain to the level gamma.

The structure perfmarg contains upper and lower bounds on the actual performance margin and the critical frequency at which the margin upper bound is smallest. The structure wcu contains the uncertain-element values that drive the peak gain to the level gamma.
[perfmarg,wcu] = robgain(usys, gamma,w) assesses the robust performance margin for the frequencies specified by w.

- If w is a cell array of the form \{wmin, wmax\}, then robgain restricts the performance margin computation to the interval between wmin and wmax.
- If w is a vector of frequencies, then robgain computes the performance margin at the specified frequencies only.
[perfmarg,wcu] = robgain(__ , opts) specifies additional options for the computation. Use robOptions to create opts. You can use this syntax with any of the previous input-argument combinations.
[perfmarg,wcu,info] = robgain(_ _) returns a structure with additional information about the performance margins and the perturbations that drive the gain to gamma. See info for details about this structure. You can use this syntax with any of the previous input-argument combinations.

Examples

Robust Performance of Closed-Loop System

Consider a control system whose plant contains both parametric uncertainty and dynamic uncertainty. Create a model of the plant using uncertain elements.
k = ureal('k',10,'Percent', 40);
delta = ultidyn('delta',[11]);
$\mathrm{G}=\mathrm{tf}(18,[11.8 \mathrm{k}]) *(1+0.5 *$ delta $)$;
Create a model of the controller, and build the closed-loop sensitivity function, S. The sensitivity measures the closed-loop response at the plant output to a disturbance at the plant input.

```
C = pid(2.3,3,0.38,0.001);
S = feedback(1,G*C);
bodemag(S,S.NominalValue)
```

Bode Diagram

The peak gain of the nominal response is very nearly 1 , but some of the sampled systems within the uncertainty range exceed that level. Suppose that you can tolerate some ringdown in the response but do not want the peak gain to exceed 1.5. Use robgain to find out how much uncertainty the system can have while the peak gain remains below 1.5.

```
[perfmarg,wcu] = robgain(S,1.5);
perfmarg
perfmarg = struct with fields:
    LowerBound: 0.7821
    UpperBound: 0.7837
```

CriticalFrequency: 7.8566

The LowerBound and UpperBound fields of perfmarg show that the robust performance margin is around 0.78 . This result means that there is a perturbation of only about 78% of the uncertainty specified in S with peak gain exceeding 1.5.

You can use uscale to examine what that normalized uncertainty of 78% means in terms of actual ranges of uncertainty. Scale all the uncertain elements in S to create a model of the closed-loop system with the maximum level of uncertainty that meets the performance requirement.

```
factor = perfmarg.LowerBound;
S_scaled = uscale(S,factor)
S_scaled =
    Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 4 states.
    The model uncertainty consists of the following blocks:
        delta: Uncertain 1x1 LTI, peak gain = 0.782, 1 occurrences
        k: Uncertain real, nominal = 10, variability = [-31.3,31.3]%, 1 occurrences
```

Type "S_scaled.NominalValue" to see the nominal value, "get(S_scaled)" to see all properties, an

The display shows how the uncertain elements in S_scaled have changed: the peak gain of the ultidyn element delta is reduced from 1 to 0.78 , and the range of variation of the uncertain real parameter k is reduced from $\pm 40 \%$ to $\pm 31.3 \%$.

The output wcu is a structure that contains the perturbations to k and delta that correspond to the target maximum performance of 1.5 . Verify that the values in wcu cause Smax to achieve the gain level of 1.5 by substituting them into S.

```
Smax = usubs(S,wcu);
getPeakGain(Smax,1e-6)
ans = 1.5001
```

Examine the disturbance rejection of the system with these values.

```
step(S.NominalValue,Smax)
legend('Nominal','Peak Gain = 1.5')
```


The CriticalFrequency field of perfmarg contains the frequency at which the peak gain reaches 1.5.

Sensitivity of Performance to Uncertain Elements

Examine the relative sensitivity of the robust performance margin to the uncertain elements of the system. Consider a model of a control system containing uncertain elements.

```
k = ureal('k',10,'Percent',50);
delta = ultidyn('delta',[1 1]);
G = tf(18,[1 1.8 k]) * (1 + 0.15*delta);
C = pid(2.3,3,0.38,0.001);
S = feedback(1,G*C);
```

Create an options set for robgain that enables the sensitivity calculation.
opts = robOptions('Sensitivity','On');
Calculate the robust performance margin of the system relative to a peak gain of 1.5 , specifying the info output to access additional information about the calculation.
[perfmarg,wcu,info] = robgain(S,1.5,opts);
Examine the Sensitivity field of info.

```
info.Sensitivity
ans = struct with fields:
    delta: 75
        k: 28
```

The values in this field indicate how much a change in the normalized perturbation on each element affects the performance margin. For example, the sensitivity for k is 28 . This value means that a given change $d k$ in the normalized uncertainty range of k causes a change of about 28% of that, or $0.28 * \mathrm{dk}$, in the performance margin. The margin in this case is more sensitive to delta, for which the margin changes by about 75% of the change in the normalized uncertainty range.

Robust Performance Margin as a Function of Frequency

Consider a model of a control system containing uncertain elements.

```
k = ureal('k',10,'Percent',40);
delta = ultidyn('delta',[1 1]);
G = tf(18,[1 1.8 k]) * (1 + 0.5*delta);
C = pid(2.3,3,0.38,0.001);
S = feedback(1,G*C);
```

By default, robgain computes only the weakest performance margin over all frequencies. To see how the margin varies with frequency, use the 'VaryFrequency' option of rob0ptions. For example, compute the performance margin of the system for a performance level of 1.5, at frequency points between 0.1 and $100 \mathrm{rad} / \mathrm{s}$.

```
opts = robOptions('VaryFrequency','on');
[perfmarg,wcu,info] = robgain(S,1.5,{0.1,100},opts);
info
info = struct with fields:
            Model: 1
        Frequency: [32x1 double]
            Bounds: [32x2 double]
    WorstPerturbation: [32x1 struct]
    Sensitivity: [1x1 struct]
```

robgain returns the vector of frequencies in the info output, in the Frequencies field. info. Bounds contains the upper and lower bounds on the performance margin at each frequency. Use these values to plot the frequency dependence of the performance margin.

```
semilogx(info.Frequency,info.Bounds)
title('Performance Margin vs. Frequency')
ylabel('Margin')
xlabel('Frequency')
legend('Lower bound','Upper bound')
```


When you use the 'VaryFrequency ' option, robgain chooses frequency points automatically. The frequencies it selects are guaranteed to include the frequency at which the margin is smallest (within the specified range). Display the returned frequency values to confirm that they include the critical frequency.

```
info.Frequency
ans = 32\times1
    0.1000
    0.1266
    0.1604
    0.2031
    0.2572
    0.3257
    0.4125
    0.5223
    0.6615
    0.8377
perfmarg.CriticalFrequency
ans = 7.9966
```

Alternatively, instead of using 'VaryFrequency', you can specify particular frequencies at which to compute the robust performance margins. info. Bounds contains the margins at all specified
frequencies. However, these results are not guaranteed to include the weakest margin, which might fall between specified frequency points.

```
w = logspace(-1,2,20);
[perfmarg,wcu,info] = robgain(S,1.5,w);
semilogx(w,info.Bounds)
title('Performance Margin vs. Frequency')
ylabel('Margin')
xlabel('Frequency')
legend('Lower bound','Upper bound')
```


Input Arguments

usys - Dynamic system with uncertainty

uss | ufrd | genss | genfrd
Dynamic system with uncertainty, specified as a uss, ufrd, genss, or genfrd model that contains uncertain elements. For genss or genfrd models, robgain uses the current value of any tunable blocks and folds them into the known (not uncertain) part of the model.
usys can also be an array of uncertain models. In that case, robgain returns the smallest margin across all models in the array, and the info output contains the index of the corresponding model.

gamma - Performance level

positive scalar

Performance level, specified as a positive scalar. The performance level is the peak gain of a system or, for MIMO systems, the peak singular value (H_{∞} norm). Generally, the lower this value, the better the system performance. robgain computes the amount of uncertainty the system can tolerate while keeping the peak gain below this level. For more information about this performance measure, see "Robustness and Worst-Case Analysis".

w- Frequencies

\{wmin,wmax\}|vector
Frequencies at which to compute robust performance margins, specified as the cell array \{wmin, wmax\} or as a vector of frequency values.

- If w is a cell array of the form \{wmin, wmax\}, then the function computes the margins at frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then the function computes the margins at each specified frequency. For example, use logspace to generate a row vector with logarithmically spaced frequency values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the model.

opts - Options for margin computation

robOptions object
Options for computation of robust performance margins, specified as an object you create with robOptions. The available options include settings that let you:

- Extract frequency-dependent performance margins.
- Examine the sensitivity of the margins to each uncertain element.
- Improve the results of the performance-margin calculation by setting certain options for the underlying mussv calculation. In particular, setting the option 'MussvOptions' to 'mN' can reduce the gap between the lower bound and upper bound. N is the number of restarts.

For more information about all available options, see robOptions.
Example: rob0ptions('Sensitivity', 'on','Mussv0ptions', 'm3')

Output Arguments

perfmarg - Robust performance margin and critical frequency
structure
Robust performance margin and critical frequency, returned as a structure containing the following fields:

Field	Description
LowerBound	Lower bound on the actual robust performance margin of the model with respect to gamma, returned as a scalar value. The exact margin is guaranteed to be no smaller than LowerBound. In other words, for all modeled uncertainty with normalized magnitude up to LowerBound, the system is guaranteed to have peak gain below gamma.
UpperBound	Upper bound on the actual robust performance margin, returned as a scalar value. The exact margin is guaranteed to be no larger than UpperBound. In other words, there exist some uncertain-element values associated with this magnitude that drive the peak gain above gamma. robgain returns one such instance in wcu.
CriticalFrequency	Frequency at which the performance margin is the smallest, in rad/TimeUnit, where TimeUnit is the TimeUnit property of usys.

A margin greater than 1 means that the gain of usys remains below gamma for all values of the uncertainty modeled in usys. A margin less than 1 means that at some frequency, the gain of usys exceeds gamma for some values of the uncertain elements within their specified ranges. For example, a margin of 0.5 implies the following:

- The gain of usys remains below gamma as long as the uncertain element values stay within 0.5 normalized units of their nominal values.
- There is a perturbation of size 0.5 normalized units that drives the peak gain above gamma.

Use uscale to scale the amount of uncertainty in usys by the performance margin to examine the actual ranges of uncertainty that yield the target performance.

If the nominal value of usys has peak gain greater than gamma, the performance margin is 0 .
If usys is an array of uncertain models, perfmarg contains the smallest margin across all models in the array. In that case, the info output contains the index of the corresponding model in its Model field.

wcu - Perturbations driving system gain to gamma

structure
Smallest perturbations of uncertain elements that drive the peak gain of usys to the level gamma, returned as a structure whose fields are the names of the uncertain elements of usys. Each field contains the actual value of the corresponding uncertain element. For example, if usys includes an uncertain matrix M and SISO uncertain dynamics delta, then wcu.M is a numeric matrix and wcu.delta is a SISO state-space model.

Use usubs (usys,wcu) to substitute these values for the uncertain elements in usys and obtain the corresponding dynamic system. This system has peak gain gamma.Use actual2normalized to convert these actual uncertainty values to the normalized units in which the performance margin is expressed.

For ureal parameters in usys whose range is not centered around the nominal value, robgain makes the following adjustments for the purposes of its analysis:

- When the worst perturbation (the smallest perturbation achieving target gain) lies outside the range of validity of the actual-to-normalized transformation (see getLimits), then robgain sets the corresponding entry of wcu to the nearest valid value. In other words, if actpert is the worst perturbation in actual units, robgain sets wcu to the nearest value inside the interval ActLims returned by getLimits.
- When there is no perturbation causing the system to exceed the target gain, then robgain sets the corresponding entry of wcu to the nominal value of the ureal parameter.

info - Additional information about performance margins

structure
Additional information about the performance margins, returned as a structure with the following fields:

Field	Description
Model	Index of the model that has the weakest performance margin, when usys is an array of models.
Frequency	Frequency points at which robgain returns the robust performance margin, returned as a vector. - If the 'VaryFrequency' option of robOptions is 'off' ', then info. Frequency is the critical frequency, the frequency at which the smallest margin occurs. If the smallest lower bound and the smallest upper bound on the performance margin occur at different frequencies, then info. Frequency is a vector containing these two frequencies. - If the 'VaryFrequency' option of robOptions is ' on ', then info. Frequency contains the frequencies selected by robgain. These frequencies are guaranteed to include the frequency at which the performance margin is smallest. - If you specify a vector of frequencies w at which to compute the performance margins, then info. Frequency = w. When you specify a frequency vector, these frequencies are not guaranteed to include the frequency at which the margin is smallest. The 'VaryFrequency' option is meaningful only for uss and genss models. robgain ignores the option for ufrd and genfrd models.
Bounds	Lower and upper bounds on the actual robust performance margin of the model, returned as an array. info. Bounds (:, 1) contains the lower bound at each corresponding frequency in info. Frequency, and info. Bounds (: , 2) contains the corresponding upper bounds.

Field	Description
WorstPerturbation	Smallest perturbations at each frequency point in info. Frequency, returned as a structure array. The fields of info. WorstPerturbation are the names of the uncertain elements in usys. Each field contains the value of the corresponding element that drives the peak gain above gamma at each frequency. For example, if usys includes an uncertain parameter p and SISO uncertain dynamics delta, then info. WorstPerturbation. p is a collection of numeric values and info. WorstPerturbation. delta is a collection of SISO state-space models.
Sensitivity	Sensitivity of the performance margin to each uncertain element, returned as a structure when the 'Sensitivity ' option of rob0ptions is 'on '. The fields of info. Sensitivity are the names of the uncertain elements in usys. Each field contains a percentage that measures how much the uncertainty in the corresponding element affects the performance margin. For example, if info. Sensitivity. p is 50, then a given fractional change in the uncertainty range of p causes half as much fractional change in the performance margin.
If the ' Sensitivity ' option of robOptions is off (the default setting), then info. Sensitivity is NaN.	

Algorithms

Computing the robustness margin at a particular frequency is equivalent to computing the structured singular value, μ, for some appropriate block structure (μ-analysis).

For uss and genss models, robgain(usys) and robgain(usys,\{wmin,wmax\}) use an algorithm that finds the smallest margin across frequency. This algorithm does not rely on frequency gridding and is not adversely affected by discontinuities of the μ structured singular value. See "Getting Reliable Estimates of Robustness Margins" for more information.

For ufrd and genfrd models, robgain computes the μ lower and upper bounds at each frequency point. This computation offers no guarantee between frequency points and can be inaccurate if there are discontinuities or sharp peaks in μ. The syntax robgain (uss, w), where w is a vector of frequency points, is the same as robgain (ufrd(uss,w)) and also relies on frequency gridding to compute the margin.

In general, the algorithm for state-space models is faster and safer than the frequency-gridding approach. In some cases, however, the state-space algorithm requires many μ calculations. In those cases, specifying a frequency grid as a vector w can be faster, provided that the robustness margin varies smoothly with frequency. Such smooth variation is typical for systems with dynamic uncertainty.

See Also

robOptions | robstab|uscale |wcgain

Topics

"Robust Stability, Robust Performance and Mu Analysis"
"Robustness and Worst-Case Analysis"

Introduced in R2016b

robOptions

Option set for robustness analysis

Syntax

opts $=$ robOptions
opts = robOptions(Name,Value, ...)

Description

opts $=$ robOptions returns the default option set for robustness analysis commands robstab and robgain, and for musynperf.
opts $=$ robOptions(Name, Value, ...) creates an option set with the options specified by one or more Name, Value pair arguments.

Examples

Options for Robustness Margin Calculation

Create an options set for a robstab, robgain, or musynperf calculation that displays the progress of the underlying mussv calculation. Also, turn on the element-by-element sensitivity calculation.

```
opts = robOptions('Display','on','Sensitivity','on');
```

Alternatively, create a default option set, and use dot notation to set the values of particular options.

```
opts = robOptions;
opts.Display = 'on';
opts.Sensitivity = 'on';
```

Use opts as an input argument to robstab, robgain, or musynperf.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: 'Display','on','Sensitivity','on'

Display - Display progress of computation and summary report

 'off' (default)|'on'Display progress and summary of the robustness computation, specified as the comma-separated pair consisting of 'Display' and one of these values:

- 'off' - Do not display progress and report.
- ' on ' - Display progress and report. When you use this option, a progress indicator and summary of results is displayed in the command window, similar to the following.

```
points completed (of 28) ... 28
System is robustly stable for the modeled uncertainty.
    -- It can tolerate up to 116% of the modeled uncertainty.
    -- There is a destabilizing perturbation amounting to 117% of the modeled uncertainty.
    -- This perturbation causes an instability at the frequency 5.9 rad/seconds.
```

This setting overrides the silent ('s') option in the MussvOptions option.

VaryFrequency - Compute robustness margin as function of frequency
 'off' (default)|'on'

Return robustness margin as a function of frequency, specified as the comma-separated pair consisting of 'VaryFrequency' and one of these values:

- 'off' - Only return margins at frequencies where robustness is weakest.
- ' on ' - Compute robustness margins over a frequency grid suitable for plotting. The frequency grid is chosen automatically based on system dynamics. This calculation is done in addition to identifying the critical frequency where the margin is weakest. Access the frequency values and corresponding margins in the info output of robstab and robgain.

This option is ignored for ufrd and genfrd models.

Sensitivity - Calculate sensitivity of robustness margin

'off' (default)|'on'
Calculate the sensitivity of the robustness margin to each uncertain element in the model, specified as the comma-separated pair consisting of 'Sensitivity' and either 'off' or 'on'.

Each uncertain element contributes to the overall stability margin in a coupled manner. Set this option to ' on ' to estimate the sensitivity of the margin to each element. This element-by-element sensitivity provides an indication of which elements are most problematic for robustness. Access the sensitivity estimates in the info output of robstab and robgain.

SensitivityPercent - Percentage variation of uncertainty for computing sensitivity 25 (default) | positive scalar value

Percentage variation of uncertainty level for computing sensitivity, specified as the comma-separated pair consisting of 'SensitivityPercent' and a positive scalar value. The sensitivity to a particular uncertain element is estimated using a finite difference calculation. This calculation increases the (normalized) amount of uncertainty on this element by some percentage, computes the resulting robustness, and computes the ratio of percent variations. This option specifies the percentage increase in uncertainty level applied to each element. The default value is 25%.

MussvOptions - Options for mussv calculation

' ' (default) | character vector
Options for the underlying mussv calculation that robstab and robgain perform, specified as the comma-separated pair consisting of 'MussvOptions' and a character vector such as 'sm3' or 'ad'.

Some MussvOptions values that are especially useful for improving robustness-margin calculations include:

- ' a' - Force the use of LMI optimization to compute the μ upper bound, which yields better results in general but can be expensive when some ureal elements are repeated multiple times.
- 'mN' - Use multiple restarts when computing the μ lower bound, which corresponds to the upper bound for robustness margins. This option can reduce the gap between the lower bound and upper bound on the robustness margins. N is the number of restarts. For example, setting 'MussvOptions' to 'm3' causes three restarts.

See mussv for the remaining available options and corresponding characters. The default, ' ' , uses the default options for mussv.

Output Arguments

opts - Options for robustness commands

robOptions object
Options for robustness commands robstab, robgain, and musynperf, returned as a robOptions object. Use the options as an input argument to robstab, robgain, or musynperf. For example:

```
[stabmarg,wcu,info] = robstab(usys,opts)
```


See Also

musynperf | robgain | robstab

Topics

"Robust Stability, Robust Performance and Mu Analysis"
"Robustness and Worst-Case Analysis"
Introduced in R2016b

robstab

Robust stability of uncertain system

Syntax

[stabmarg,wcu] = robstab(usys)
[stabmarg,wcu] = robstab(usys,w)
[stabmarg,wcu] = robstab(_,opts)
[stabmarg,wcu,info] = robstab(___)

Description

[stabmarg,wcu] = robstab(usys) calculates the robust stability margin for an uncertain system. This stability margin is relative to the uncertainty level specified in usys. A robust stability margin greater than 1 means that the system is stable for all values of its modeled uncertainty. A robust stability margin less than 1 means that the system becomes unstable for some values of the uncertain elements within their specified ranges. For example, a margin of 0.5 implies the following:

- usys remains stable as long as the uncertain element values stay within 0.5 normalized units of their nominal values.
- There is a destabilizing perturbation of size 0.5 normalized units.

The structure stabmarg contains upper and lower bounds on the actual stability margin and the critical frequency at which the stability margin is smallest. The structure wcu contains the destabilizing values of the uncertain elements.
[stabmarg,wcu] = robstab(usys,w) restricts the robust stability margin computation to the frequencies specified by w.

- If w is a cell array of the form $\{w m i n, w m a x\}$, then robstab restricts the stability margin computation to the interval between wmin and wmax.
- If w is a vector of frequencies, then robstab computes the robust stability margin at the specified frequencies only.
[stabmarg,wcu] = robstab(\qquad ,opts) specifies additional options for the computation. Use robOptions to create opts. You can use this syntax with any of the previous input-argument combinations.
[stabmarg,wcu,info] = robstab(__) returns a structure with additional information about the stability margins and destabilizing perturbations. See info for details about this structure. You can use this syntax with any of the previous input-argument combinations.

Examples

Robust Stability Margin of Closed-Loop System

Consider a control system whose plant contains both parametric uncertainty and dynamic uncertainty. Create a model of the plant using uncertain elements.

```
k = ureal('k',10,'Percent',40);
delta = ultidyn('delta',[1 1]);
G = tf(18,[1 1.8 k]) * (1 + 0.5*delta);
```

Create a model of the controller, and build the closed-loop transfer function.
$C=\operatorname{pid}(2.3,3,0.38,0.001) ;$
CL $=$ feedback(G*C,1);
A step response plot shows that the closed-loop system is nominally stable.
step(CL.NominalValue)

Examine the robust stability of the closed-loop system.

```
[stabmarg,wcu] = robstab(CL);
stabmarg
stabmarg = struct with fields:
        LowerBound: 1.5960
        UpperBound: 1.5993
    CriticalFrequency: 4.8627
```

The LowerBound and UpperBound fields of stabmarg show the robust stability margin of the closed-loop system is around 1.6. This result means that the system can withstand about 60% more uncertainty than is specified in the uncertain elements without going unstable.

You can use uscale to scale system uncertainty by the stability margin, to examine the system response for the full range of safe uncertainties. Scale the uncertainties in CL by the robust stability margin to create a system with the maximum tolerable amount of uncertainty.

```
CLmaxunc = uscale(CL,stabmarg.UpperBound);
CLmaxunc.Uncertainty.delta
ans =
    Uncertain LTI dynamics "delta" with 1 outputs, 1 inputs, and gain less than 1.6.
CLmaxunc.Uncertainty.k
ans =
    Uncertain real parameter "k" with nominal value 10 and variability [-64,64]%.
```

The uncertain elements in CLmaxunc have ranges about 1.6 times the range of the original modeled uncertainty in CL.

The output wcu is a structure that contains the smallest perturbation to k and delta that make the system unstable. Confirm the instability by substituting these values into the closed-loop model and examining the pole locations.

```
CLunst = usubs(CL,wCu);
pole(CLunst)
ans = 8x1 complex
102 x
    -9.9314 + 0.0000i
    -0.1027 + 0.1009i
    -0.1027 - 0.1009i
    -0.0000 + 0.0486i
    -0.0000 - 0.0486i
    -0.0115 + 0.0000i
    -0.0216 + 0.0000i
    -0.0403 + 0.0000i
```

The resulting system has an undamped pair of complex poles with natural frequency 4.89, which renders it unstable. The CriticalFrequency field of stabmarg contains the same value, which is the frequency at which the CL is closest to instability.

Sensitivity to Uncertain Elements

Examine the relative sensitivity of the robust stability margin to the uncertain elements of the system. Consider a model of a control system containing uncertain elements.

```
k = ureal('k',10,'Percent',40);
delta = ultidyn('delta',[1 1]);
G = tf(18,[1 1.8 k]) * (1 + 0.25*delta);
C = pid(2.3,3,0.38,0.001);
CL = feedback(G*C,1);
```

Create an options set for robstab that enables the sensitivity calculation.

```
opts = robOptions('Sensitivity','On');
```

Calculate the robust stability margin, specifying the info output to access additional information about the calculation.

```
[stabmarg,wcu,info] = robstab(CL,opts);
```

Examine the Sensitivity field of info.

```
info.Sensitivity
ans = struct with fields:
    delta: 80
        k: 20
```

The values in this field indicate how much a change in the normalized perturbation on each element affects the stability margin. For example, the sensitivity for k is 21 . This value means that a given change dk in the normalized uncertainty range of k causes a change of about 21% percent of that, or $0.21 * \mathrm{dk}$, in the stability margin. The margin in this case is much more sensitive to delta, for which the margin changes by about 81% of the change in the normalized uncertainty range.

Robust Stability Margin as a Function of Frequency

Consider a model of a control system containing uncertain elements.

```
k = ureal('k',10,'Percent',40);
delta = ultidyn('delta',[1 1]);
G = tf(18,[1 1.8 k]) * (1 + 0.5*delta);
C = pid(2.3,3,0.38,0.001);
CL = feedback(G*C,1);
```

By default, robstab computes only the weakest stability margin over all frequencies. To see how the stability margin varies with frequency, use the 'VaryFrequency' option of robOptions. For example, compute the stability margin of the system at frequency points between 0.1 and $10 \mathrm{rad} / \mathrm{s}$.

```
opts = robOptions('VaryFrequency','on');
[stabmarg,wcu,info] = robstab(CL,{0.1,10},opts);
info
info = struct with fields:
            Model: 1
        Frequency: [19\times1 double]
            Bounds: [19\times2 double]
    WorstPerturbation: [19x1 struct]
    Sensitivity: [1x1 struct]
```

robstab returns the vector of frequencies in the info output, in the Frequencies field.
info. Bounds contains the upper and lower bounds on the stability margin at each frequency. Use these values to plot the frequency dependence of the stability margin.

```
semilogx(info.Frequency,info.Bounds)
title('Stability Margin vs. Frequency')
ylabel('Margin')
```

xlabel('Frequency')
legend('Lower bound','Upper bound')

Stability Margin vs. Frequency

When you use the 'VaryFrequency ' option, robstab chooses frequency points automatically. The frequencies it selects are guaranteed to include the frequency at which the stability margin is weakest (within the specified range). Display the returned frequency values to confirm that they include the critical frequency.

```
info.Frequency
ans = 19\times1
    0.1000
    0.1061
    0.1425
    0.1914
    0.2572
    0.3455
    0.4642
    0.6236
    0.8377
    1.1253
```

stabmarg.CriticalFrequency
ans $=4.8280$

Alternatively, instead of using 'VaryFrequency' , you can specify particular frequencies at which to compute the robust stability margins. info. Bounds contains the margins at all specified
frequencies. However, these results are not guaranteed to include the weakest margin, which might fall between specified frequency points.

```
w = logspace(-1,1,25);
[stabmarg,wcu,info] = robstab(CL,w);
semilogx(w,info.Bounds)
title('Stability Margin vs. Frequency')
ylabel('Margin')
xlabel('Frequency')
legend('Lower bound','Upper bound')
```


Stability Margin vs. Frequency

Input Arguments

usys - Dynamic system with uncertainty

uss |ufrd | genss | genfrd
Dynamic system with uncertainty, specified as a uss, ufrd, genss, or genfrd model that contains uncertain elements. For genss or genfrd models, robstab uses the current value of any tunable blocks and folds them into the known (not uncertain) part of the model.

For frequency-response models, ufrd or genfrd, robstab assumes that the system is nominally stable.
usys can also be an array of uncertain models. In that case, robstab returns the smallest margin across all models in the array, and the info output contains the index of the corresponding model.

w - Frequencies

\{wmin, wmax\} | vector
Frequencies at which to compute robust stability margins, specified as the cell array \{wmin,wmax \} or as a vector of frequency values.

- If w is a cell array of the form \{wmin, wmax\}, then the function computes the margins at frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then the function computes the margins at each specified frequency. For example, use logspace to generate a row vector with logarithmically spaced frequency values.

For uss and genss models, when w is a vector, robstab(usys,w) is equivalent to robstab(ufrd(usys,w)). Therefore, usys must be nominally stable.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the model.

opts - Options for margin computation

robOptions object
Options for computation of robust stability margins, specified as an object you create with robOptions. The available options include settings that let you:

- Extract frequency-dependent stability margins.
- Examine the sensitivity of the margins to each uncertain element.
- Improve the results of the stability-margin calculation by setting certain options for the underlying mussv calculation. In particular, setting the option 'Mussv0ptions' to 'mN' can reduce the gap between the lower bound and upper bound. N is the number of restarts.

For more information about all available options, see robOptions.
Example: robOptions('Sensitivity','on','Mussv0ptions','m3')

Output Arguments

stabmarg - Robust stability margin and critical frequency
structure
Robust stability margin and critical frequency, returned as a structure containing the following fields:

Field	Description
LowerBound	Lower bound on the actual robust stability margin of the model, returned as a scalar value. The exact stability margin is guaranteed to be no smaller than LowerBound. In other words, for all modeled uncertainty with normalized magnitude up to LowerBound, the system is guaranteed stable.

Field	Description
UpperBound	Upper bound on the actual robust stability margin of the model, returned as a scalar value. The exact stability margin is guaranteed to be no larger than UpperBound. In other words, there exist some uncertain-element values associated with this magnitude that cause instability. robstab returns one such instance in wcu.
CriticalFrequency	Frequency at which the stability margin is the smallest, in rad/TimeUnit, where TimeUnit is the TimeUnit property of usys.

A robust stability margin greater than 1 means that usys is stable for all values of its modeled uncertainty. A robust stability margin less than 1 implies that usys becomes unstable for some values of its uncertain elements within their specified ranges. For example, a margin of 0.5 implies the following:

- usys remains stable as long as the uncertain element values stay within 0.5 normalized units of their nominal values.
- There is a destabilizing perturbation of size 0.5 normalized units.

Use uscale to scale the amount of uncertainty in usys by the stability margin to examine the actual tolerable ranges of uncertainty.

If the nominal value of usys is unstable, the stability margin is 0 . If usys is a ufrd or genfrd model, robstab assumes it is nominally stable.

If usys is an array of uncertain models, stabmarg contains the smallest margin across all models in the array. In that case, the info output contains the index of the corresponding model in its Model field.

wCu - Perturbations causing instability

structure
Smallest perturbations of uncertain elements that cause instability in usys, returned as a structure whose fields are the names of the uncertain elements of usys. Each field contains the actual destabilizing value for each uncertain element of usys. For example, if usys includes an uncertain matrix M and SISO uncertain dynamics delta, then wcu. M is a numeric matrix and wcu. delta is a SISO state-space model.

Use usubs (usys, wcu) to substitute these values for the uncertain elements in usys, to obtain the unstable dynamic system that deviates the least from the nominal system. Use actual2normalized to convert these actual uncertainty values to the normalized units in which the stability margin is expressed.

For ureal parameters in usys whose range is not centered around the nominal value, robstab makes the following adjustments for the purposes of its analysis:

- When the worst perturbation (the smallest destabilizing perturbation) lies outside the range of validity of the actual-to-normalized transformation (see getLimits), then robstab sets the corresponding entry of wcu to the nearest valid value. In other words, if actpert is the worst perturbation in actual units, robgain sets wcu to the nearest value inside the interval ActLims returned by getLimits.
- When there is no destabilizing perturbation, then robstab sets the corresponding entry of wcu to the nominal value of the ureal parameter.

info - Additional information about stability margins

structure
Additional information about the robust stability margins, returned as a structure with the following fields:

Field	Description
Model	Index of the model that has the weakest stability margin, when usys is an array of models.
Frequency	Frequency points at which robstab returns the robust stability margin, returned as a vector. - If the 'VaryFrequency' option of robOptions is 'off', then info. Frequency is the critical frequency, the frequency at which the smallest margin occurs. If the smallest lower bound and the smallest upper bound on the stability margin occur at different frequencies, then info. Frequency is a vector containing these two frequencies. - If the 'VaryFrequency' option of robOptions is ' on ', then info. Frequency contains the frequencies selected by robstab. These frequencies are guaranteed to include the frequency at which the stability margin is smallest. - If you specify a vector of frequencies w at which to compute the stability margins, then info. Frequency $=\mathrm{w}$. When you specify a frequency vector, these frequencies are not guaranteed to include the frequency at which the stability margin is smallest. The 'VaryFrequency' option is meaningful only for uss and genss models. robstab ignores the option for ufrd and genfrd models.
Bounds	Lower and upper bounds on the actual robust stability margin of the model, returned as an array. info. Bounds (: ,1) contains the lower bound at each corresponding frequency in info. Frequency, and info. Bounds (: , 2) contains the corresponding upper bounds.

Field	Description
WorstPerturbation	Smallest destabilizing perturbations at each frequency point in info. Frequency, returned as a structure array. The fields of info. WorstPerturbation are the names of the uncertain elements in usys, and each field contains the destabilizing value of the corresponding element at each frequency. For example, if usys includes an uncertain parameter p and SISO uncertain dynamics delta, then info. WorstPerturbation.p is a collection of numeric values and info. WorstPerturbation. delta is a collection of SISO state-space models.
Sensitivity	Sensitivity of the stability margin to each uncertain element, returned as a structure when the 'Sensitivity ' option of rob0ptions is 'on '. The fields of info. Sensitivity are the names of the uncertain elements in usys. Each field contains a percentage that measures how much the uncertainty in the corresponding element affects the stability margin. For example, if info. Sensitivity.p is 50, then a given fractional change in the uncertainty range of p causes half as much fractional change in the stability margin.
If the ' Sensitivity ' option of roboptions is off (the default setting), then info. Sensitivity is NaN.	

Algorithms

Computing the robustness margin at a particular frequency is equivalent to computing the structured singular value, μ, for some appropriate block structure (μ-analysis).

For uss and genss models, robstab(usys) and robstab(usys,\{wmin,wmax\}) use an algorithm that finds the smallest margin across frequency. This algorithm does not rely on frequency gridding and is not adversely affected by discontinuities of the μ structured singular value. See "Getting Reliable Estimates of Robustness Margins" for more information.

For ufrd and genfrd models, robstab computes the μ lower and upper bounds at each frequency point. This computation offers no guarantee between frequency points and can be inaccurate if there are discontinuities or sharp peaks in μ. The syntax robstab (uss, w), where w is a vector of frequency points, is the same as robstab(ufrd(uss,w)) and also relies on frequency gridding to compute the margin.

In general, the algorithm for state-space models is faster and safer than the frequency-gridding approach. In some cases, however, the state-space algorithm requires many μ calculations. In those cases, specifying a frequency grid as a vector w can be faster, provided that the robustness margin varies smoothly with frequency. Such smooth variation is typical for systems with dynamic uncertainty.

See Also

actual2normalized | mussv|normalized2actual|robOptions|robgain|uscale|wcgain

Topics

"Robust Stability and Worst-Case Gain of Uncertain System"
"Robust Stability, Robust Performance and Mu Analysis"
"Robustness and Worst-Case Analysis"

Introduced in R2016b

robustperf

(Not recommended) Robust performance margin of uncertain multivariable system

Note robustperf is not recommended. Use robgain instead.

Syntax

```
perfmarg = robustperf(usys)
[perfmarg,wcu,report,info] = robustperf(usys)
[perfmarg,wcu,report,info] = robustperf(usys,opt)
```


Description

The performance of a nominally stable uncertain system model will generally degrade for specific values of its uncertain elements. robustperf, largely included for historical purposes, computes the robust performance margin, which is one measure of the level of degradation brought on by the modeled uncertainty.

As with other uncertain-system analysis tools, only bounds on the performance margin are computed. The exact robust performance margin is guaranteed to lie between these upper and lower bounds.

The computation used in robustperf is a frequency-domain calculation. Coupled with stability of the nominal system, this frequency domain calculation determines robust performance of usys. If the input system usys is a ufrd, then the analysis is performed on the frequency grid within the ufrd. Note that the stability of the nominal system is not verified by the computation. If the input system sys is a uss, then the stability of the nominal system is first checked, an appropriate frequency grid is generated (automatically), and the analysis performed on that frequency grid. In all discussion that follows, N denotes the number of points in the frequency grid.

Basic Syntax

Suppose usys is a ufrd or uss with M uncertain elements. The results of
[perfmarg,perfmargunc,Report] = robustperf(usys)
are such that perfmarg is a structure with the following fields:

Field	Description
LowerBound	Lower bound on robust performance margin, positive scalar.
UpperBound	Upper bound on robust performance margin, positive scalar.
CriticalFrequency	The value of frequency at which the performance degradation curve crosses the $y=1 / x$ curve. See "Robustness and Worst-Case Analysis".

perfmargunc is a struct of values of uncertain elements associated with the intersection of the performance degradation curve and the $y=1 / x$ curve. See "Robustness and Worst-Case Analysis". There are M field names, which are the names of uncertain elements of usys.

Report is a text description of the robust performance analysis results.
If usys is an array of uncertain models, the outputs are struct arrays whose entries correspond to each model in the array.

Examples

Create a plant with a nominal model of an integrator, and include additive unmodeled dynamics uncertainty of a level of 0.4 (this corresponds to 100% model uncertainty at $2.5 \mathrm{rads} / \mathrm{s}$).

```
P = tf(1,[1 0]) + ultidyn('delta',[1 1],'bound',0.4);
```

Design a "proportional" controller K that puts the nominal closed-loop bandwidth at $0.8 \mathrm{rad} / \mathrm{s}$. Roll off K at a frequency 25 times the nominal closed-loop bandwidth. Form the closed-loop sensitivity function.

```
BW = 0.8;
K = tf(BW,[1/(25*BW) 1]);
S = feedback(1,P*K);
```

Assess the performance margin of the closed-loop sensitivity function. Because the nominal gain of the sensitivity function is 1 , and the performance degradation curve is monotonically increasing (see "Robustness and Worst-Case Analysis"), the performance margin should be less than 1.

```
[perfmargin,punc] = robustperf(S);
perfmargin
perfmargin =
    UpperBound: 7.4305e-001
    LowerBound: 7.4305e-001
    CriticalFrequency: 5.3096e+000
```

You can verify that the upper bound of the performance margin corresponds to a point on or above the $y=1 / x$ curve. First, compute the normalized size of the value of the uncertain element, and check that this agrees with the upper bound.

```
nsize = actual2normalized(S.Uncertainty.delta, punc.delta)
nsize =
perfmargin.UpperBound
ans =
    7.4305e-001
```

Compute the system gain with that value substituted, and verify that the product of the normalized size and the system gain is greater than or equal to 1.

```
gain = norm(usubs(S,punc),inf,.00001);
nsize*gain
ans =
    1.0000e+000
```

Finally, as a sanity check, verify that the robust performance margin is less than the robust stability margin.

```
[stabmargin] = robuststab(S);
stabmargin
stabmargin =
    UpperBound: 3.1251e+000
```

LowerBound: 3.1251e+000
DestabilizingFrequency: $4.0862 \mathrm{e}+000$
While the robust stability margin is easy to describe (poles migrating from stable region into unstable region), describing the robust performance margin is less elementary. See the diagrams and figures in "Robustness and Worst-Case Analysis". Rather than finding values for uncertain elements that lead to instability, the analysis finds values of uncertain elements "corresponding to the intersection point of the performance degradation curve with a $y=1 / x$ hyperbola." This characterization, mentioned above in the description of perfmarg. CriticalFrequency and perfmargunc, is used often in the descriptions below.

Basic Syntax with Fourth Output Argument

A fourth output argument yields more specialized information, including sensitivities and frequency-by-frequency information.
[perfmarg,perfmargunc,Report,Info] = robustperf(usys)
In addition to the first 3 output arguments, described previously, Info is a structure with the following fields:
$\left.\begin{array}{|l|l|}\hline \text { Field } & \text { Description } \\ \hline \text { Sensitivity } & \begin{array}{l}\text { A struct with } M \text { fields, field names are names of uncertain } \\ \text { elements of usys. Values of fields are positive and contain the local } \\ \text { sensitivity of the overall Stability Margin to that element's } \\ \text { uncertainty range. For instance, a value of 25 indicates that if the } \\ \text { uncertainty range is enlarged by 8\%, then the stability margin } \\ \text { should drop by about 2\% (25\% of 8). If the Sensitivity property } \\ \text { of the robustperf0ptions object is 'off' , the values are set to } \\ \text { NaN. }\end{array} \\ \hline \text { Frequency } & \text { N-by-1 frequency vector associated with analysis. } \\ \hline \text { BadUncertainValues } & \begin{array}{l}N \text {-by-1 struct array containing the worst uncertain element values } \\ \text { at each frequency. }\end{array} \\ \hline \text { MussvBnds } & \begin{array}{l}\text { A 1-by-2 frd, with upper and lower bounds from mussv. The (1,1) } \\ \text { entry is the } \mu-u p p e r ~ b o u n d ~(c o r r e s p o n d s ~ t o ~\end{array} \\ \text { perfmarg. LowerBound) and the (1,2) entry is the p-lower bound } \\ \text { (for perfmarg. UpperBound). }\end{array}\right\}$

Specifying Additional Options

Use robustperf0ptions to specify additional options for the robustperf computation. For example, you can control what is displayed during the computation, turn the sensitivity computation on or off, set the step size in the sensitivity computation, or control the option argument used in the underlying call to mussv. For example, you can turn the display on and turn off the sensitivity by executing
opt = robustperf0ptions('Sensitivity','off','Display','on');
[PerfMarg,Destabunc,Report,Info] = robustperf(usys,opt)
See the robustperf0ptions reference page for more information about available options.

Limitations

Because the calculation is carried out with a frequency gridding, it is possible (likely) that the true critical frequency is missing from the frequency vector used in the analysis. This is similar to the problem in robuststab. However, in comparing to robuststab, the problem in robustperf is less acute. The robust performance margin, considered a function of problem data and frequency, is typically a continuous function (unlike the robust stability margin, described in "Getting Reliable Estimates of Robustness Margins"). Hence, in robust performance margin calculations, increasing the density of the frequency grid will always increase the accuracy of the answers, and in the limit, answers arbitrarily close to the actual answers are obtainable with finite frequency grids.

Algorithms

A rigorous robust performance analysis consists of two steps:
1 Verify that the nominal system is stable.
2 Robust performance analysis on an augmented system.
The algorithm in robustperf follows this in spirit, with the following limitations:

- If usys is a uss object, then robustperf explicitly checks the stability of the nominal value. However, if usys is a ufrd model, robustperf instead assumes that the nominal value is stable, and does not perform this check.
- The exact performance margin is guaranteed to be no larger than UpperBound (some uncertain elements associated with this magnitude cause instability - one instance is returned in the structure perfmargunc). The instability created by perfmargunc occurs at the frequency value in CriticalFrequency.
- Similarly, the exact performance margin is guaranteed to be no smaller than LowerBound.

See Also

actual2normalized|mussv|norm|robgain|robstab|wcdiskmargin|wcgain

Introduced before R2006a

robustperfOptions

(Not recommended) Option set for robustperf

Note robustperf0ptions is not recommended. Use robOptions instead.

Syntax

options = robustperf0ptions
options $=$ robustperf0ptions(Name,Value,...)

Description

options $=$ robustperf0ptions returns the default option set for the robustperf command.
options = robustperfOptions(Name, Value, ...) creates an option set with the options specified by one or more Name, Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Valuel, ... , NameN, ValueN.
robustperf0ptions takes the following Name arguments:

Display

Specifies whether robustperf displays progress of mussv computations.

- 'off' - Do not display progress.
- 'on ' - Display progress. This setting overrides the silent ('s') option in the Mussv option.

Default: 'off'

Sensitivity

Specifies whether robustperf computes the sensitivity of the performance margin with respect to each individual uncertain element. This element-by-element sensitivity provides an indication of which elements the performance margin is most sensitive to. Turning off the element-by-element sensitivity calculation speeds up robustperf.

- ' on ' - Compute the sensitivity for each uncertain element.
- 'off' - Do not compute the sensitivity for each uncertain element.

Default: 'on'

VaryUncertainty

Percentage variation of uncertainty for computing sensitivity. The sensitivity estimate uses a finite difference calculation.

Default: 25

Mussv

Options for the mussv calculation that robustperf performs. See mussv for the available options.
Default: ' ' (default behavior of mussv)

Output Arguments

options

Option set containing the specified options for the robustperf command.

Examples

Create an options set for a robustperf calculation that displays the progress of the mussv calculation. Also, turn off the element-by-element sensitivity calculation.

```
options = robustperfOptions('Display','on','Sensitivity','off');
```

Alternatively, use dot notation to set the values of options.

```
options = robustperfOptions;
options.Display = 'on';
options.Sensitivity = 'off';
```


See Also

rob0ptions

Introduced in R2011b

robuststab

(Not recommended) Calculate robust stability margins of uncertain multivariable system

Note robuststab is not recommended. Use robstab instead.

Syntax

[stabmarg,destabunc, report,info] = robuststab(sys)
[stabmarg,destabunc, report,info] = robuststab(sys,opt)

Description

A nominally stable uncertain system is generally unstable for specific values of its uncertain elements. Determining the values of the uncertain elements closest to their nominal values for which instability occurs is a robust stability calculation.

If the uncertain system is stable for all values of uncertain elements within their allowable ranges (ranges for ureal, norm bound or positive-real constraint for ultidyn, radius for ucomplex, weighted ball for ucomplexm), the uncertain system is robustly stable. Conversely, if there is a combination of element values that cause instability, and all lie within their allowable ranges, then the uncertain system is not robustly stable.
robuststab computes the margin of stability robustness for an uncertain system. A stability robustness margin greater than 1 means that the uncertain system is stable for all values of its modeled uncertainty. A stability robustness margin less than 1 implies that certain allowable values of the uncertain elements, within their specified ranges, lead to instability.

Numerically, a margin of 0.5 (for example) implies two things: the uncertain system remains stable for all values of uncertain elements that are less than 0.5 normalized units away from their nominal values and, there is a collection of uncertain elements that are less than or equal to 0.5 normalized units away from their nominal values that results in instability. Similarly, a margin of 1.3 implies that the uncertain system remains stable for all values of uncertain elements up to 30% outside their modeled uncertain ranges. See actual2normalized for converting between actual and normalized deviations from the nominal value of an uncertain element.

As with other uncertain-system analysis tools, only bounds on the exact stability margin are computed. The exact robust stability margin is guaranteed to lie in between these upper and lower bounds.

The computation used in robuststab is a frequency-domain calculation, which determines whether poles can migrate (due to variability of the uncertain atoms) across the stability boundary (imaginary axis for continuous-time, unit circle for discrete-time). Coupled with stability of the nominal system, determining that no migration occurs constitutes robust stability. If the input system sys is a ufrd, then the analysis is performed on the frequency grid within the ufrd. Note that the stability of the nominal system is not verified by the computation. If the input system sys is a uss, then the stability of the nominal system is first checked, an appropriate frequency grid is generated (automatically), and the analysis performed on that frequency grid. In all discussion that follows, N denotes the number of points in the frequency grid.

Basic Syntax

Suppose sys is a ufrd or uss with M uncertain elements. The results of
[stabmarg,destabunc,Report] = robuststab(sys)
are that stabmarg is a structure with the following fields

Field	Description
LowerBound	Lower bound on stability margin, positive scalar. If greater than 1, then the uncertain system is guaranteed stable for all values of the modeled uncertainty. If the nominal value of the uncertain system is unstable, then stabmarg.UpperBound and stabmarg.LowerBound both equal 0.
UpperBound	Upper bound on stability margin, positive scalar. If less than 1, the uncertain system is not stable for all values of the modeled uncertainty.
DestabilizingFrequency	The critical value of frequency at which instability occurs, with uncertain elements closest to their nominal values. At a particular value of uncertain elements (see destabunc below), the poles migrate across the stability boundary (imaginary-axis in continuous-time systems, unit-disk in discrete- time systems) at the frequency given by DestabilizingFrequency.

destabunc is a structure of values of uncertain elements, closest to nominal, that cause instability. There are M field names, which are the names of uncertain elements of sys. The value of each field is the corresponding value of the uncertain element, such that when jointly combined, lead to instability. The command pole(usubs (sys, destabunc)) shows the instability. If A is an uncertain element of sys, then
actual2normalized(destabunc.A,sys.Uncertainty.A)
will be less than or equal to UpperBound, and for at least one uncertain element of sys, this normalized distance will be equal to UpperBound, proving that UpperBound is indeed an upper bound on the robust stability margin.

Report is a text description of the arguments returned by robuststab.
If sys is an array of uncertain models, the outputs are struct arrays whose entries correspond to each model in the array.

Examples

Construct a feedback loop with a second-order plant and a PID controller with approximate differentiation. The second-order plant has frequency-dependent uncertainty, in the form of additive unmodeled dynamics, introduced with an ultidyn object and a shaping filter.
robuststab is used to compute the stability margins of the closed-loop system with respect to the plant model uncertainty.

```
P = tf(4,[1 . 8 4]);
delta = ultidyn('delta',[1 1],'SampleStateDimension',5);
Pu = P + 0.25*tf([1],[.15 1])*delta;
C = tf([1 1],[.1 1]) + tf(2,[1 0]);
S = feedback(1,Pu*C);
[stabmarg,destabunc,report,info] = robuststab(S);
```

You can view the stabmarg variable.

```
stabmarg
stabmarg =
UpperBound: 0.8181
LowerBound: 0.8181
DestabilizingFrequency: 9.1321
```

As the margin is less than 1 , the closed-loop system is not stable for plant models covered by the uncertain model Pu. There is a specific plant within the uncertain behavior modeled by Pu (actually about 82% of the modeled uncertainty) that leads to closed-loop instability, with the poles migrating across the stability boundary at $9.1 \mathrm{rads} / \mathrm{s}$.

The report variable is specific, giving a plain-language version of the conclusion.

```
report
report =
Uncertain System is NOT robustly stable to modeled uncertainty.
    -- It can tolerate up to 81.8% of modeled uncertainty.
    -- A destabilizing combination of 81.8% the modeled uncertainty
exists, causing an instability at 9.13 rad/s.
    -- Sensitivity with respect to uncertain element ...
        'delta' is 100%. Increasing 'delta' by 25% leads to a
25% decrease in the margin.
```

Because the problem has only one uncertain element, the stability margin is completely determined by this element, and hence the margin exhibits 100% sensitivity to this uncertain element.

You can verify that the destabilizing value of delta is indeed about 0.82 normalized units from its nominal value.

```
actual2normalized(S.Uncertainty.delta,destabunc.delta)
ans =
    0.8181
```

Use usubs to substitute the specific value into the closed-loop system. Verify that there is a closedloop pole near j9.1, and plot the unit-step response of the nominal closed-loop system, as well as the unstable closed-loop system.

```
Sbad = usubs(S,destabunc);
pole(Sbad)
ans =
    1.0e+002 *
    -3.2318
    -0.2539
    -0.0000 + 0.0913i
    -0.0000 - 0.0913i
    -0.0203 + 0.0211i
    -0.0203 - 0.0211i
    -0.0106 + 0.0116i
    -0.0106 - 0.0116i
step(S.NominalValue,'r--',Sbad,'g',4);
```

Finally, as an ad-hoc test, set the gain bound on the uncertain delta to 0.81 (slightly less than the stability margin). Sample the closed-loop system at 100 values, and compute the poles of all these systems.

```
S.Uncertainty.delta.Bound = 0.81;
S100 = usample(S,100);
p100 = pole(S100);
max(real(p100(:)))
ans =
    -6.4647e-007
```

As expected, all poles have negative real parts.

Basic Syntax with Fourth Output Argument

A fourth output argument yields more specialized information, including sensitivities and frequency-by-frequency information.
[StabMarg,Destabunc,Report,Info] = robuststab(sys)
In addition to the first 3 output arguments, described previously, Info is a structure with the following fields

Field	Description
Sensitivity	A struct with M fields, Field names are names of uncertain elements of sys. Values of fields are positive, each the local sensitivity of the overall stability margin to that element's uncertainty range. For instance, a value of 25 indicates that if the uncertainty range is enlarged by 8\%, then the stability margin should drop by about 2\% (25\% of 8). If the Sensitivity property of the robuststab0ptions object is ' off ' , the values are set to NaN.
Frequency	N-by-1 frequency vector associated with analysis.
BadUncertainValues	N-by-1 struct array containing the destabilizing uncertain element values at each frequency.
MussvBnds	A 1-by-2 frd, with upper and lower bounds from mussv. The (1,1) entry is the μ-upper bound (corresponds to stabmarg. LowerBound) and the (1,2) entry is the $\mu-l o w e r ~ b o u n d ~(f o r ~ s t a b m a r g . ~ U p p e r B o u n d) . ~$
MussvInfo	Structure of compressed data from mussv.

Specifying Additional Options

Use robuststabOptions to specify additional options for the robuststab computation. For example, you can control what is displayed during the computation, turning the sensitivity computation on or off, set the step-size in the sensitivity computation, or control the option argument used in the underlying call to mussv. For instance, you can turn the display on, and the sensitivity calculation off by executing

```
opt = robuststabOptions('Sensitivity','off','Display','on');
[StabMarg,Destabunc,Report,Info] = robuststab(sys,opt)
```

See the robuststabOptions reference page for more information about available options.

Limitations

Under most conditions, the robust stability margin at each frequency is a continuous function of the problem data at that frequency. Because the problem data, in turn, is a continuous function of
frequency, it follows that finite frequency grids are usually adequate in correctly assessing robust stability bounds, assuming the frequency grid is dense enough.

Nevertheless, there are simple examples that violate this. In some problems, the migration of poles from stable to unstable only occurs at a finite collection of specific frequencies (generally unknown to you). Any frequency grid that excludes these critical frequencies (and almost every grid will exclude them) will result in undetected migration and misleading results, namely stability margins of ∞.

See "Getting Reliable Estimates of Robustness Margins" for more information about circumventing the problem in an engineering-relevant fashion.

Algorithms

A rigorous robust stability analysis consists of two steps:
1 Verify that the nominal system is stable;
2 Verify that no poles cross the stability boundary as the uncertain elements vary within their ranges.

Because the stability boundary is also associated with the frequency response, the second step can be interpreted (and carried out) as a frequency domain calculation. This amounts to a classical μ analysis problem.

The algorithm in robuststab follows this in spirit, with the following limitations.

- If sys is a uss object, then the first requirement of stability of nominal value is explicitly checked within robuststab. However, if sys is an ufrd, then the verification of nominal stability from the nominal frequency response data is not performed, and is instead assumed.
- In the second step (monitoring the stability boundary for the migration of poles), rather than check all points on stability boundary, the algorithm only detects migration of poles across the stability boundary at the frequencies in info. Frequency.

See "Limitations" on page 1-451 for information about issues related to migration detection.
The exact stability margin is guaranteed to be no larger than UpperBound (some uncertain elements associated with this magnitude cause instability - one instance is returned in the structure destabunc). The instability created by destabunc occurs at the frequency value in DestabilizingFrequency.

Similarly, the exact stability margin is guaranteed to be no smaller than LowerBound. In other words, for all modeled uncertainty with magnitude up to LowerBound, the system is guaranteed stable. These bounds are derived using the upper bound for the structured singular value, which is essentially optimally-scaled, small-gain theorem analysis.

See Also

diskmargin|mussv|robgain|robstab|wcdiskmargin|wcgain
Introduced before R2006a

robuststabOptions

(Not recommended) Option set for robuststab
$\overline{\text { Note }}$ robuststabOptions is not recommended. Use robOptions instead.

Syntax

options = robuststabOptions
options = robuststabOptions(Name,Value,...)

Description

options = robuststabOptions returns the default option set for the robuststab command.
options $=$ robuststabOptions(Name, Value, ...) creates an option set with the options specified by one or more Name, Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Valuel, . . . , NameN, ValueN.
robuststabOptions takes the following Name arguments:

Display

Specifies whether robuststab displays progress of mussv computations.

- 'off' - Do not display progress.
- 'on ' - Display progress. This setting overrides the silent ('s') option in the Mussv option.

Default: 'off'

Sensitivity

Specifies whether robuststab computes the sensitivity of the stability margin with respect to each individual uncertain element. This element-by-element sensitivity provides an indication of which elements the stability margin is most sensitive to. Turning off the element-by-element sensitivity calculation speeds up robuststab.

- ' on ' - Compute the sensitivity for each uncertain element.
- 'off' - Do not compute the sensitivity for each uncertain element.

Default: 'on '

VaryUncertainty

Percentage variation of uncertainty for computing sensitivity. The sensitivity estimate uses a finite difference calculation.

Default: 25

Mussv

Options for the mussv calculation that robustperf performs. See mussv for the available options.
Default: ' ' (default behavior of mussv)

Output Arguments

options

Option set containing the specified options for the robuststab command.

Examples

Create an options set for a robuststab calculation that displays the progress of the mussv calculation. Also, turn off the element-by-element sensitivity calculation.

```
options = robuststabOptions('Display','on','Sensitivity','off');
```

Alternatively, use dot notation to set the values of options.

```
options = robuststabOptions;
options.Display = 'on';
options.Sensitivity = 'off';
```


See Also

robOptions

Introduced in R2011b

schurmr

Balanced model truncation via Schur method

Syntax

```
GRED = schurmr(G)
GRED = schurmr(G,order)
[GRED,redinfo] = schurmr(G,keyl,value1,...)
[GRED,redinfo] = schurmr(G,order,key1,value1, ...)
```


Description

schurmr returns a reduced order model GRED of G and a struct array redinfo containing the error bound of the reduced model and Hankel singular values of the original system.

The error bound is computed based on Hankel singular values of G. For a stable system Hankel singular values indicate the respective state energy of the system. Hence, reduced order can be directly determined by examining the system Hankel SV's, σ.

With only one input argument G , the function will show a Hankel singular value plot of the original model and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the additive error \| G-GRED $\|_{\infty}$ for well-conditioned model reduced problems [1]:

$$
\|G-G r e d\|_{\infty} \leq 2 \sum_{k+1}^{n} \sigma_{i}
$$

This table describes input arguments for schurmr.

Argument	Description
G	LTI model to be reduced (without any other inputs will plot its Hankel singular values and prompt for reduced order).
ORDER	(Optional) an integer for the desired order of the reduced model, or optionally a vector packed with desired orders for batch runs

A batch run of a serial of different reduced order models can be generated by specifying order $=$ $x: y$, or a vector of integers. By default, all the anti-stable part of a system is kept, because from control stability point of view, getting rid of unstable state(s) is dangerous to model a system.
'MaxError' can be specified in the same fashion as an alternative for ' ORDER '. In this case, reduced order will be determined when the sum of the tails of the Hankel sv's reaches the 'MaxError'.

Argument	Value	Description
'MaxError'	A real number or a vector of different errors	Reduce to achieve H_{∞} error. When present, 'MaxError' overrides ORDER input.
'Weights'	\{Wout , Win\} cell array	Optimal 1x2 cell array of LTI weights Wout (output) and Win (input); default is both identity; Weights must be invertible.
'Display'	'on' or 'off'	Display Hankel singular plots (default 'off ').
'Order'	Integer, vector or cell array	Order of reduced model. Use only if not specified as 2nd argument.

Weights on the original model input and/or output can make the model reduction algorithm focus on some frequency range of interests. But weights have to be stable, minimum phase and invertible.

This table describes output arguments.

Argument	Description
GRED	LTI reduced order model. Becomes multi-dimensional array when input is a serial of different model order array.
REDINF0	A STRUCT array with 3 fields: - REDINFO. REDINFO. StabSV - REDINFO.UnstabSV

G can be stable or unstable. G and GRED can be either continuous or discrete.

Examples

Given a continuous or discrete, stable or unstable system, G , the following commands can get a set of reduced order models based on your selections:

```
rng(1234,'twister');
G = rss(30,5,4);
[g1, redinfol] = schurmr(G); % display Hankel SV plot
    % and prompt for order (try 15:20)
[g2, redinfo2] = schurmr(G,20);
[g3, redinfo3] = schurmr(G,[10:2:18]);
[g4, redinfo4] = schurmr(G,'MaxError',[0.01, 0.05]);
for i = 1:4
    figure(i); eval(['sigma(G,g' num2str(i) ');']);
end
```


Algorithms

Given a state space (A, B, C, D) of a system and k, the desired reduced order, the following steps will produce a similarity transformation to truncate the original state-space system to the $k^{\text {th }}$ order reduced model [16].

1 Find the controllability and observability grammians P and Q.

2 Find the Schur decomposition for $P Q$ in both ascending and descending order, respectively,

$$
\begin{aligned}
V_{A}^{T} P Q V_{A} & =\left[\begin{array}{ccc}
\lambda_{1} & \cdots & \ldots \\
0 & \ldots & \ldots \\
0 & 0 & \lambda_{n}
\end{array}\right] \\
V_{D}^{T} P Q V_{D} & =\left[\begin{array}{ccc}
\lambda n & \cdots & \cdots \\
0 & \ldots & \ldots \\
0 & 0 & \lambda_{1}
\end{array}\right]
\end{aligned}
$$

3 Find the left/right orthonormal eigen-bases of $P Q$ associated with the $k^{\text {th }}$ big Hankel singular values.

$$
V_{A}=\left[V_{R, S M A L L}, V_{L, B I G}\right]
$$

4 Find the SVD of $\left(V_{L, B I G}^{T} V_{R, B I G}\right)=U \Sigma V^{T}$

$$
V_{D}=\left[V_{R, B I G}, V_{L, S M A L L}\right]
$$

5 Form the left/right transformation for the final $k^{\text {th }}$ order reduced model

$$
\begin{aligned}
& S_{L, B I G}=V_{L, B I G} U \Sigma(1: k, 1: k)^{-1 / 2} \\
& S_{\mathrm{R}, \mathrm{BIG}}=V_{R, B I G} V \Sigma(1: k, 1: k)^{-1 / 2}
\end{aligned}
$$

6 Finally,

$$
\left[\begin{array}{ll}
\widehat{A} & \widehat{B} \\
\widehat{C} & \widehat{D}
\end{array}\right]=\left[\begin{array}{cc}
S_{L, B I G}^{T} A S_{R, B I G} & S_{L, B I G}^{T} B \\
C S_{R, B I G} & D
\end{array}\right]
$$

The proof of the Schur balance truncation algorithm can be found in [2].

References

[1] K. Glover, "All Optimal Hankel Norm Approximation of Linear Multivariable Systems, and Their $\mathrm{L}_{\alpha}{ }^{-}$ error Bounds," Int. J. Control, vol. 39, no. 6, pp. 1145-1193, 1984.
[2] M. G. Safonov and R. Y. Chiang, "A Schur Method for Balanced Model Reduction," IEEE Trans. on Automat. Contr., vol. 34, no. 7, July 1989, pp. 729-733.

See Also

balancmr|bstmr|hankelmr|hankelsv|ncfmr|reduce
Introduced before R2006a

sdhinfnorm

Compute L_{2} norm of continuous-time system in feedback with discrete-time system

Syntax

```
[gaml,gamu] = sdhinfnorm(sdsys,k)
[gaml,gamu] = sdhinfnorm(sdsys,k,delay)
[gaml,gamu] = sdhinfnorm(sdsys,k,delay,tol)
```


Description

[gaml, gamu] = sdhinfnorm(sdsys,k) computes the L_{2} induced norm of a continuous-time LTI plant, sdsys, in feedback with a discrete-time controller, k, connected through an ideal sampler and a zero-order hold (see figure below). sdsys must be strictly proper, such that the constant feedback gain must be zero. The outputs, gamu and gaml, are upper and lower bounds on the induced L_{2} norm of the sampled-data closed-loop system.

[gaml, gamu] = sdhinfnorm(sdsys, k, h, delay) includes the input argument delay. delay is a nonnegative integer associated with the number of computational delays of the controller. The default value of the delay is 0 .
[gaml,gamu] = sdhinfnorm(sdsys,k,h,delay,tol) includes the input argument, tol, which defines the difference between upper and lower bounds when search terminates. The default value of tol is 0.001 .

Examples

Consider an open-loop, continuous-time transfer function $p=30 / s(s+30)$ and a continuous-time controller $k=4 /(s+4)$. The closed-loop continuous-time system has a peak magnitude across frequency of 1 .

```
p = ss(tf(30,[1 30])*tf([1],[1 0]));
k = ss(tf(4,[1 4]));
cl = feedback(p,k);
norm(cl,'inf')
ans =
    1
```

Initially the controller is to be implemented at a sample rate of 1.5 Hz . The sample-data norm of the closed-loop system with the discrete-time controller is 1.0.

```
kd = c2d(k,0.75,'zoh');
[gu,gl] = sdhinfnorm([1; 1]*p*[1 1],-kd);
[gu gl]
ans =
    3.7908 3.7929
```

Because of the large difference in norm between the continuous-time and sampled-data closed-loop system, the sample rate of the controller is increased from 1.5 Hz to 5 Hz . The sample-data norm of the new closed-loop system is 3.79 .

```
kd = c2d(k,0.2,'zoh');
[gu,gl] = sdhinfnorm([1; 1]*p*[1 1],-kd);
[gu gl]
ans =
    1.0044 1.0049
```


Algorithms

sdhinfnorm uses variations of the formulas described in the Bamieh and Pearson paper to obtain an equivalent discrete-time system. (These variations are done to improve the numerical conditioning of the algorithms.) A preliminary step is to determine whether the norm of the continuous-time system over one sampling period without control is less than the given value. This requires a search and is, computationally, a relatively expensive step.

References

Bamieh, B.A., and J.B. Pearson, "A General Framework for Linear Periodic Systems with Applications to Sampled-Data Control," IEEE Transactions on Automatic Control, Vol. AC-37, 1992, pp. 418-435.

See Also
gapmetric|hinfsyn|norm|sdhinfsyn|sdlsim
Introduced before R2006a

sdhinfsyn

Compute H_{∞} controller for sampled-data system

Syntax

[K, GAM] $=$ sdhinfsyn (P , NMEAS, NCON)
[K,GAM]=sdhinfsyn(P,NMEAS,NCON, KEY1,VALUE1,KEY2,VALUE2, ...)

Description

sdhinfsyn controls a continuous-time LTI system P with a discrete-time controller K. The continuous-time LTI plant P has a state-space realization partitioned as follows:

$$
P=\left[\begin{array}{ccc}
A & B_{1} & B_{2} \\
C_{1} & 0 & 0 \\
C_{2} & 0 & 0
\end{array}\right]
$$

where the continuous-time disturbance inputs enter through B_{1}, the outputs from the controller are held constant between sampling instants and enter through B_{2}, the continuous-time errors (to be kept small) correspond to the C_{1} partition, and the output measurements that are sampled by the controller correspond to the C_{2} partition. B_{2} has column size ncon and C_{2} has row size nmeas. Note that the D matrix must be zero.
sdhinfsyn synthesizes a discrete-time LTI controller K to achieve a given norm (if possible) or find the minimum possible norm to within tolerance TOLGAM.

Similar to hinfsyn, the function sdhinfsyn employs a γ iteration. Given a high and low value of γ, GMAX and GMIN, the bisection method is used to iterate on the value of γ in an effort to approach the optimal H_{∞} control design. If GMAX = GMIN, only one γ value is tested. The stopping criterion for the bisection algorithm requires that the relative difference between the last γ value that failed and the last γ value that passed be less than TOLGAM.

Input arguments

P	LTI plant
NMEAS	Number of measurements output to controller

NCON	Number of control inputs

Optional input arguments (KEY, VALUE) pairs are similar to hinfsyn, but with additional KEY values 'Ts' and 'DELAY'.

KEY	VALUE	Meaning
' GMAX'	real	Initial upper bound on GAM (default=Inf)
' GMIN '	real	Initial lower bound on GAM (default=0)
'TOLGAM'	real	Relative error tolerance for GAM (default=.01)
'Ts'	real	(Default=1) sample time of the controller to be designed
'DELAY'	integer	(Default=0) a nonnegative integer giving the number of sample periods delay for the control computation
'DISPLAY'	'off'	(Default) no command window display, or the command window displays synthesis progress information

Output arguments

K	H_{∞} controller
GAM	Final γ value of H_{∞} cost achieved

Algorithms

sdhinfsyn uses a variation of the formulas described in the Bamieh and Pearson paper [1] to obtain an equivalent discrete-time system. (This is done to improve the numerical conditioning of the algorithms.) A preliminary step is to determine whether the norm of the continuous-time system over one sampling period without control is less than the given γ-value. This requires a search and is computationally a relatively expensive step.

References

[1] Bamieh, B.A., and J.B. Pearson, "A General Framework for Linear Periodic Systems with Applications to Sampled-Data Control," IEEE Transactions on Automatic Control, Vol. AC-37, 1992, pp. 418-435.

See Also

hinfsyn|norm | sdhinfnorm
Introduced before R2006a

sdlsim

Time response of sampled-data feedback system

Syntax

```
sdlsim(p,k,w,t,tf)
sdlsim(p,k,w,t,tf,x0,z0)
sdlsim(p,k,w,t,tf,x0,z0,int)
[vt,yt,ut,t] = sdlsim(p,k,w,t,tf)
[vt,yt,ut,t] = sdlsim(p,k,w,t,tf,x0,z0,int)
```


Description

$\operatorname{sdl} \operatorname{sim}(p, k, w, t, t f)$ plots the time response of the hybrid feedback system. lft (p, k), is forced by the continuous input signal described by w and t (values and times, as in lsim). p must be a continuous-time LTI system, and k must be discrete-time LTI system with a specified sample time (the unspecified sample time -1 is not allowed). The final time is specified with tf.
$\operatorname{sdl} \operatorname{sim}(p, k, w, t, t f, x 0, z 0)$ specifies the initial state vector $x 0$ of p, and $z 0$ of k, at time $t(1)$.
sdlsim($p, k, w, t, t f, x 0, z 0, i n t)$ specifies the continuous-time integration step size int. sdlsim forces int $=(\mathrm{k} . \mathrm{Ts}) / \mathrm{N}$ int where $N>4$ is an integer. If any of these optional arguments is omitted, or passed as empty matrices, then default values are used. The default value for $x 0$ and $z 0$ is zero. Nonzero initial conditions are allowed for p (and/or k) only if p (and/or k) is an ss object.

If p and/or k is an LTI array with consistent array dimensions, then the time simulation is performed pointwise across the array dimensions.
[vt,yt,ut,t] = sdlsim(p,k,w,t,tf) computes the continuous-time response of the hybrid feedback system lft (p, k) forced by the continuous input signal defined by w and t (values and times, as in lsim). p must be a continuous-time system, and k must be discrete-time, with a specified sample time (the unspecified sample time -1 is not allowed). The final time is specified with tf . The outputs vt, yt and ut are 2-by-1 cell arrays: in each the first entry is a time vector, and the second entry is the signal values. Stored in this manner, the signal vt is plotted by using one of the following commands:

```
plot(vt{1},vt{2})
plot(vt{:})
```

Signals $y t$ and ut are respectively the input to k and output of k.
If p and/or k are LTI arrays with consistent array dimensions, then the time simulation is performed pointwise across the array dimensions. The outputs are 2-by-1-by-array dimension cell arrays. All responses can be plotted simultaneously, for example, plot(vt).
[vt,yt,ut,t] $=\operatorname{sdl} \operatorname{sim}(p, k, w, t, t f, x 0, z 0$,int $)$ The optional arguments are int (integration step size), $x 0$ (initial condition for p), and $z 0$ (initial condition for k). sdlsim forces int = (k.Ts)/N, where $N>4$ is an integer. If any of these arguments is omitted, or passed as empty
matrices, then default values are used. The default value for $x 0$ and $z 0$ is zero. Nonzero initial conditions are allowed for p (and/or k) only if p (and/or k) is an ss object.

Examples

Time Response of Continuous Plant with Discrete Controller

To illustrate the use of sdlsim, consider the application of a discrete controller to a plant with an integrator and near integrator. A continuous plant and a discrete controller are created. A sample-and-hold equivalent of the plant is formed and the discrete closed-loop system is calculated.
Simulating this gives the system response at the sample points. sdlsim is then used to calculate the intersample behavior.

```
P = tf(1,[1, 1e-5,0]);
T = 1.0/20;
C = ss([-1.5 T/4; -2/T -.5],[ .5 2;1/T 1/T],...
    [-1/T^2 -1.5/T], [1/T^2 0],T);
Pd = c2d(P,T,'zoh');
```

The closed-loop digital system is now set up. You can use sysic to construct the interconnected feedback system.

```
systemnames = 'Pd C';
inputvar = '[ref]';
outputvar = '[Pd]';
input_to_Pd = '[C]';
input_to_C = '[ref ; Pd]';
sysoutname = 'dclp';
cleanupsysic = 'yes';
sysic;
```

Use step to simulate the digital step response.

```
[yd,td] = step(dclp,20*T);
```

Set up the continuous interconnection and calculate the sampled data response with sdlsim.

```
M = [0,1;1,0;0,1]*blkdiag(1,P);
t = [0:.01:1]';
u = ones(size(t));
y1 = sdlsim(M,C,u,t);
plot(td,yd,'r*',yl{:},'b-')
axis([0,1,0,1.5])
xlabel('Time: seconds')
title('Step response: discrete (*) and continuous')
```


You can see the effect of a nonzero initial condition in the continuous-time system. Note how examining the system at only the sample points will underestimate the amplitude of the overshoot.
y2 = sdlsim(M,C,u,t,1,0,[0.25;0]);
plot(td,yd,'r*',y1\{:\},'b-',y2\{:\},'g--')
axis([0,1,0,1.5])
xlabel('Time: seconds')
title('Step response: nonzero initial condition')

Step response: nonzero initial condition

Finally, you can examine the effect of a sinusoidal disturbance at the continuous-time plant output. This controller is not designed to reject such a disturbance and the system does not contain antialiasing filters. Simulating the effect of antialiasing filters is easily accomplished by including them in the continuous interconnection structure.

```
M2 = [0,1,1;1,0,0;0,1,1]*blkdiag(1,1,P);
t = [0:.001:1]';
dist = 0.1*sin(41*t);
u = ones(size(t));
[y3,meas,act] = sdlsim(M2,C,[u dist],t,1);
plot(y3{:},'-',t,dist,'b--',t,u,'g-.')
xlabel('Time: seconds')
title('Step response: disturbance (dashed) and output (solid)')
```

Step response: disturbance (dashed) and output (solid)

Algorithms

sdlsim oversamples the continuous-time, N times the sample rate of the controller k.

See Also

gapmetric|hinfsyn|norm|sdhinfnorm| sdhinfsyn| sysic
Introduced before R2006a

sectf

State-space sector bilinear transformation

Syntax

$[G, T]=\operatorname{sectf}(F, S E C F, S E C G)$

Description

[G,T] $=\operatorname{sectf}(F, S E C F, S E C G)$ computes a linear fractional transform T such that the system lft (F, K) is in sector SECF if and only if the system lft (G, K) is in sector SECG where
$G=l f t(T, F, N U, N Y)$
where NU and NY are the dimensions of $u_{T 2}$ and $y_{T 2}$, respectively-see the following figure.

Sector transform G=lft(T, F,NU,NY).

sectf are used to transform general conic-sector control system performance specifications into equivalent H_{∞}-norm performance specifications.

Input Arguments

F	LTI state-space plant

Input Arguments

SECG, SECF:	Conic Sector:					
	$[-1,1]$ or $[-1 ; 1]$	$\\|y\\|^{2} \leq\\|u\\|^{2}$				
	$[0$, Inf $]$ or $[0 ;$ Inf $]$	$0 \leq \operatorname{Re}[y * u]$				
	$[\mathrm{A}, \mathrm{B}]$ or $[\mathrm{A} ; \mathrm{B}]$	$0 \geq \operatorname{Re}[(y-A u) *(y-B u)]$				
	$[\mathrm{a}, \mathrm{b}]$ or $[\mathrm{a} ; \mathrm{b}]$	$0 \geq \operatorname{Re}[(y-\operatorname{diag}(a) u) *(y-\operatorname{diag}(b) u)]$				
	S	$0 \geq \operatorname{Re}\left[\left(S_{11} u+S_{12} y\right) *\left(S_{21} u+S_{22} y\right)\right]$				
	S	$0 \geq \operatorname{Re}\left[\left(S_{11} u+S_{12} y\right) *\left(S_{21} u+S_{22} y\right)\right]$				

where A, B are scalars in [$-\infty, \infty$] or square matrices; a, b are vectors; $S=[S 11$ S12;S21,S22] is a square matrix whose blocks $\mathrm{S} 11, \mathrm{~S} 12, \mathrm{~S} 21, \mathrm{~S} 22$ are either scalars or square matrices; S is a two-port system $\mathrm{S}=\mathrm{mksys}(\mathrm{a}, \mathrm{b} 1, \mathrm{~b} 2, \ldots$, 'tss ') with transfer function

$$
S(s)=\left[\begin{array}{ll}
S_{11}(s) & S_{12}(s) \\
S_{21}(s) & S_{22}(s)
\end{array}\right]
$$

Output Arguments	Description
G	Transformed plant $G(s)=l \mathrm{ftf}(\mathrm{T}, \mathrm{F})$
T	LFT sector transform, maps conic sector SECF into conic sector SECG

Output Variables

G	The transformed plant $G(s)=\operatorname{lft}(\mathrm{T}, \mathrm{F}):$
T	The linear fractional transformation $T(s)=\mathrm{T}$

Examples

The statement $G(j \omega)$ inside sector[-1, 1] is equivalent to the H_{∞} inequality

$$
\sup _{\omega} \bar{\sigma}(G(j \omega))=\|G\|_{\infty} \leq 1
$$

Given a two-port open-loop plant $P(s):=P$, the command $P 1=\operatorname{sectf}(P,[0, \operatorname{Inf}]$, $[-1,1])$ computes a transformed $P_{1}(s):=\mathrm{P} 1$ such that if $\mathrm{lft}(\mathrm{G}, \mathrm{K})$ is inside sector[$\left.-1,1\right]$ if and only if $\mathrm{lft}(F, K)$ is inside sector $\left[0,{ }_{\infty}\right]$. In other words, norm(lft (G, K), inf) <1 if and only if lft (F, K) is strictly positive real. See "Example of Sector Transform" on page 1-469.

Sector Transform Block Diagram

Here is a simple example of the sector transform.

$$
P(s)=\frac{1}{s+1} \in \operatorname{sector}[-1,1] \rightarrow P_{1}(s)=\frac{s+2}{2} \in \operatorname{sector}[0, \infty] .
$$

You can compute this by simply executing the following commands:

```
P = ss(tf(1,[1 1]));
P1 = sectf(P,[-1,1],[0,Inf]);
```

The Nyquist plots for this transformation are depicted in "Example of Sector Transform" on page 1469. The condition $P_{1}(s)$ inside $\left[0,{ }_{\infty}\right]$ implies that $P_{1}(s)$ is stable and $P_{1}(j \omega)$ is positive real, i.e.,

$$
P_{1}^{*}(j \omega)+P_{1}(j \omega) \geq 0 \quad \forall \omega
$$

Example of Sector Transform

Limitations

A well-posed conic sector must have $\operatorname{det}(B-A) \neq 0$ or

$$
\operatorname{det}\left(\left[\begin{array}{ll}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{array}\right]\right) \neq 0
$$

Also, you must have $\operatorname{dim}\left(u_{F 1}\right)=\operatorname{dim}\left(y_{F 1}\right)$ since sectors are only defined for square systems.

Algorithms

sectf uses the generalization of the sector concept of [3] described by [1]. First the sector input data $\mathrm{Sf}=\mathrm{SECF}$ and $\mathrm{Sg}=\mathrm{SECG}$ is converted to two-port state-space form; non-dynamical sectors are handled with empty $a, b 1, b 2, c 1, c 2$ matrices. Next the equation

$$
S_{g(s)}\left[\begin{array}{l}
u_{g_{1}} \\
y_{g_{1}}
\end{array}\right]=S_{f}(s)\left[\begin{array}{l}
u_{f_{1}} \\
y_{f_{1}}
\end{array}\right]
$$

is solved for the two-port transfer function $T(s)$ from $u_{g_{1}} y_{f_{1}}$ to $u_{f_{1}} y_{g_{1}}$. Finally, the function lftf is used to compute $G(s)$ as $G=\operatorname{lftf}(\mathrm{T}, \mathrm{F})$.

References

[1] Safonov, M.G., Stability and Robustness of Multivariable Feedback Systems. Cambridge, MA: MIT Press, 1980.
[2] Safonov, M.G., E.A. Jonckheere, M. Verma and D.J.N. Limebeer, "Synthesis of Positive Real Multivariable Feedback Systems," Int. J. Control, vol. 45, no. 3, pp. 817-842, 1987.
[3] Zames, G., "On the Input-Output Stability of Time-Varying Nonlinear Feedback Systems \geq - Part I: Conditions Using Concepts of Loop Gain, Conicity, and Positivity," IEEE Trans. on Automat. Contr., AC-11, pp. 228-238, 1966.

See Also

hinfsyn|lft
Introduced before R2006a

setlmis

Initialize description of LMI system

Syntax

setlmis(lmi0)

Description

Before starting the description of a new LMI system with lmivar and lmiterm, type
setlmis([])
to initialize its internal representation.
To add on to an existing LMI system, use the syntax
setlmis(lmi0)
where lmi0 is the internal representation of this LMI system. Subsequent lmivar and lmiterm commands will then add new variables and terms to the initial LMI system lmi0.

See Also

getlmis|lmiterm|lmivar|newlmi
Introduced before R2006a

setmvar

Instantiate matrix variable and evaluate all LMI terms involving this matrix variable

Syntax

```
mnewsys = setmvar(lmisys,X,Xval)
```


Description

setmvar sets the matrix variable X with identifier X to the value X val. All terms involving X are evaluated, the constant terms are updated accordingly, and X is removed from the list of matrix variables. A description of the resulting LMI system is returned in newsys.

The integer X is the identifier returned by lmivar when X is declared. Instantiating X with setmvar does not alter the identifiers of the remaining matrix variables.

The function setmvar is useful to freeze certain matrix variables and optimize with respect to the remaining ones. It saves time by avoiding partial or complete redefinition of the set of LMI constraints.

Examples

Consider the system
x. $=\quad A x \quad+\quad B u$
and the problem of finding a stabilizing state-feedback law $u=K x$ where K is an unknown matrix.
By the Lyapunov Theorem, this is equivalent to finding $P>0$ and K such that
$(A+B K) P+B\left(A+B K^{T}\right)+\quad+\quad 1$

With the change of variable $Y:=K P$, this condition reduces to the LMI
$A P \quad P A^{T}+\quad B Y+Y^{T} B^{T}+\quad 1 \quad 0$.

This LMI is entered by the commands

```
n = size(A,1) % number of states
ncon = size(B,2) % number of inputs
setlmis([])
P = lmivar(1,[n 1]) % P full symmetric
Y = lmivar(2,[ncon n]) % Y rectangular
lmiterm([1 1 1 1 P],A,1,'s') %AP+PA'
lmiterm([1 1 1 Y],B,1,'s') % BY+Y'B'
lmiterm([1 1 1 0],1) % I
lmis = getlmis
```

To find out whether this problem has a solution K for the particular Lyapunov matrix $P=I$, set P to I by typing
news $=$ setmvar(lmis, $P, 1$)
The resulting LMI system news has only one variable $Y=K$. Its feasibility is assessed by calling feasp:
[tmin,xfeas] = feasp(news)
$Y=$ dec2mat (news, xfeas, Y)
The computed Y is feasible whenever tmin <0.

See Also

delmvar|evallmi
Introduced before R2006a

showlmi

Return left and right sides of LMI after evaluation of all variable terms

Syntax

[lhs,rhs] = showlmi(evalsys,n)

Description

For given values of the decision variables, the function evallmi evaluates all variable terms in a system of LMIs. The left and right sides of the n-th LMI are then constant matrices that can be displayed with showlmi. If evalsys is the output of evallmi, the values lhs and rhs of these left and right sides are given by
[lhs,rhs] = showlmi(evalsys,n)
An error is issued if evalsys still contains variable terms.

Examples

See the description of evallmi.

See Also

evallmi|setmvar
Introduced before R2006a

simplify

Simplify representation of uncertain object

Syntax

$B=$ simplify (A)
B = simplify(A,'full')
$B=$ simplify(A,'basic')
B = simplify(A,'class')

Description

$B=$ simplify(A) performs model-reduction-like techniques to detect and eliminate redundant copies of uncertain elements. Depending on the result, the class of B may be lower than A. The AutoSimplify property of each uncertain element in A governs what reduction methods are used. After reduction, any uncertain element which does not actually affect the result is deleted from the representation.

B = simplify(A,'full') overrides all uncertain element's AutoSimplify property, and uses ' full' reduction techniques.

B = simplify(A,'basic') overrides all uncertain element's AutoSimplify property, and uses 'basic' reduction techniques.
$B=$ simplify (A,'class') does not perform reduction. However, any uncertain elements in A with zero occurrences are eliminated, and the class of B may be lower than the class of A.

Examples

Create a simple umat with a single uncertain real parameter. Select specific elements, note that result remains in class umat. Simplify those same elements, and note that class changes.

```
p1 = ureal('p1',3,'Range',[2 5]);
L = [2 pl];
L(1)
UMAT: 1 Rows, 1 Columns
L(2)
UMAT: 1 Rows, 1 Columns
    p1: real, nominal = 3, range = [2 5], 1 occurrence
simplify(L(1))
ans =
    2
simplify(L(2))
Uncertain Real Parameter: Name p1, NominalValue 3, Range [2 5]
```

Create four uncertain real parameters, with a default value of AutoSimplify('basic'), and define a high order polynomial [1].

```
m = ureal('m',125000,'Range',[100000 150000]);
xcg = ureal('xcg',.23,'Range',[.15 .31]);
```

```
zcg = ureal('zcg',.105,'Range',[0 .21]);
va = ureal('va',80,'Range',[70 90]);
cw = simplify(m/(va*va)*va,'full')
UMAT: 1 Rows, 1 Columns
    m: real, nominal = 1.25e+005, range = [100000 150000],
1 occurrence
    va: real, nominal = 80, range = [70 90], 1 occurrence
cw = m/va;
fac2 = .16726*xcg*cw*cw*zcg - .17230*xcg*xcg*cw ...
    -3.9*xcg*cw*zcg - .28*xcg*xcg*cw*cw*zcg ...
    -.07*xcg*xcg*zcg + .29*xcg*xcg*cw*zcg ...
    + 4.9*xcg*cw - 2.7*xcg*cw*cw ...
    +.58*cw*cw - 0.25*xcg*xcg - 1.34*cw ...
    +100.1*xcg -14.1*zcg - 1.91*cw****zcg ...
    +1.12*xcg*zcg + 24.6*cw*zcg ...
    +.45*xcg*xcg*cw*cw - 46.85
UMAT: 1 Rows, 1 Columns
    m: real, nominal = 1.25e+005, range = [100000 150000],
18 occurrences
    va: real, nominal = 80, range = [70 90], 8 occurrences
    xcg: real, nominal = 0.23, range = [0.15 0.31], 18 occurrences
    zcg: real, nominal = 0.105, range = [0 0.21], 1 occurrence
```

The result of the high-order polynomial is an inefficient representation involving 18 copies of $\mathrm{m}, 8$ copies of va, 18 copies of xcg and 1 copy of zcg . Simplify the expression, using the 'full' simplification algorithm

```
fac2s = simplify(fac2,'full')
UMAT: 1 Rows, 1 Columns
    m: real, nominal = 1.25e+005, range = [100000 150000],
4 occurrences
    va: real, nominal = 80, range = [70 90], 4 occurrences
    xcg: real, nominal = 0.23, range = [0.15 0.31], 2 occurrences
    zcg: real, nominal = 0.105, range = [0 0.21], 1 occurrence
```

which results in a much more economical representation.
Alternatively, change the AutoSimplify property of each parameter to 'full' before forming the polynomial.

```
m.AutoSimplify = 'full';
xcg.AutoSimplify = 'full';
zcg.AutoSimplify = 'full';
va.AutoSimplify = 'full';
```

You can form the polynomial, which immediately gives a low order representation.

```
cw = m/va;
fac2f = .16726*xcg*cw*cw*zcg - .17230*xcg*xcg*cw ...
    -3.9*xcg*cw*zcg - .28*xcg*xcg*cw*cw*zcg ...
    -.07*xcg*xcg*zcg + .29*xcg*xcg*cw*zcg ...
    + 4.9*xcg*cw - 2.7*xcg*cw* cw ...
    +.58*cw*cw - 0.25*xcg*xcg - 1.34*cw ...
    +100.1*xcg -14.1*zcg - 1.91*cw**w*zcg ...
    +1.12*xcg*zcg + 24.6*cw*zcg ...
    +.45*xcg*xcg*cw*cw - 46.85
UMAT: 1 Rows, 1 Columns
    m: real, nominal = 1.25e+005, range = [100000 150000],
```

```
4 occurrences
    va: real, nominal = 80, range = [70 90], 4 occurrences
    xcg: real, nominal = 0.23, range = [0.15 0.31], 2 occurrences
    zcg: real, nominal = 0.105, range = [0 0.21], 1 occurrence
```

Create two real parameters, da and dx, and a 2-by-3 matrix, ABmat, involving polynomial expressions in the two real parameters .

```
da = ureal('da',0,'Range',[-1 1]);
dx = ureal('dx',0,'Range',[-1 1]);
al1 = -. 32 + da*(. .8089 + da*(-.987 + 3.39*da)) + . 15*dx;
a12 = . . 334 + da*(.0474 - . 302*da);
a21 = -1.15 + da*(4.39 + da*(21.97 - 561*da*da)) ...
    + dx*(9.65 - da*(55.7 + da*177));
a22 = -.66 + da*(1.2 - da*2.27) + dx*(2.66 - 5.1*da);
b1 = -0.00071 + da*(0.00175 - da*.00308) + .0011*dx;
b2 = -0.031 + da*(.078 + da*(-.464 + 1.37*da)) + .0072*dx;
ABmat = [a11 a12 b1;a21 a22 b2]
UMAT: 2 Rows, 3 Columns
    da: real, nominal = 0, range = [-1 1], 19 occurrences
    dx: real, nominal = 0, range = [-1 1], 2 occurrences
```

Use 'full' simplification to reduce the complexity of the description.

```
ABmatsimp = simplify(ABmat,'full')
UMAT: 2 Rows, 3 Columns
    da: real, nominal = 0, range = [-1 1], 7 occurrences
    dx: real, nominal = 0, range = [-1 1], 2 occurrences
```

Alternatively, you can set the parameter's AutoSimplify property to 'full'.

```
da.AutoSimplify = 'full';
dx.AutoSimplify = 'full';
```

Now you can rebuild the matrix

```
a11 = -. 32 + da*(.8089 + da*(-.987 + 3.39*da)) + . 15*dx;
a12 = . 934 + da*(.0474 - . 302*da);
a21 = -1.15 + da*(4.39 + da*(21.97 - 561*da*da)) ...
        + dx*(9.65 - da*(55.7 + da*177));
a22 = -.66 + da*(1.2 - da*2.27) + dx*(2.66 - 5.1*da);
b1 = -0.00071 + da*(0.00175 - da*.00308) + .0011*dx;
b2 = -0.031 + da*(.078 + da*(-.464 + 1.37*da)) + .0072*dx;
ABmatFull = [a11 a12 b1;a21 a22 b2]
UMAT: 2 Rows, 3 Columns
    da: real, nominal = 0, range = [-1 1], 7 occurrences
    dx: real, nominal = 0, range = [-1 1], 2 occurrences
```


Limitations

Multidimensional model reduction and realization theory are only partially complete theories. The heuristics used by simplify are that - heuristics. The order in which expressions involving uncertain elements are built up, eg., distributing across addition and multiplication, can affect the details of the representation (i.e., the number of occurrences of a ureal in an uncertain matrix). It is possible that simplify's naive methods cannot completely resolve these differences, so one may be forced to work with "nonminimal" representations of uncertain systems.

Algorithms

simplify uses heuristics along with one-dimensional model reduction algorithms to partially reduce the dimensionality of the representation of an uncertain matrix or system.

References

[1] Varga, A. and G. Looye, "Symbolic and numerical software tools for LFT-based low order uncertainty modeling," IEEE International Symposium on Computer Aided Control System Design, 1999, pp. 5-11.
[2] Belcastro, C.M., K.B. Lim and E.A. Morelli, "Computer aided uncertainty modeling for nonlinear parameter-dependent systems Part II: F-16 example," IEEE International Symposium on Computer Aided Control System Design, 1999, pp. 17-23.

See Also

ucomplex | umat | ureal |uss |uss
Introduced before R2006a

skewdec

Form skew-symmetric matrix

Syntax

$X=\operatorname{skewdec}(m, n)$

Description

$X=$ skewdec (m, n) forms the m-by-m skew-symmetric matrix

$$
\left[\begin{array}{cccc}
0 & -(n+1) & -(n+2) & \ldots \\
(n+1) & 0 & -(n+3) & \ldots \\
(n+2) & (n+3) & 0 & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right]
$$

This function is useful to define skew-symmetric matrix variables. In this case, set n to the number of decision variables already used.

Examples

Skew-Symmetric Matrix

Create a 3-by-3 skew-symmetric matrix for an LMI problem in which $\mathrm{n}=2$. Display the matrix to verify its form.

```
X = skewdec(3,2)
X = 3\times3
\begin{tabular}{rrr}
0 & -3 & -4 \\
3 & 0 & -5 \\
4 & 5 & 0
\end{tabular}
```

See Also
decinfo|lmivar

Introduced before R2006a

slowfast

Slow and fast modes decomposition

Syntax

[G1,G2] = slowfast(G,ns)

Description

slowfast computes the slow and fast modes decompositions of a system $G(s)$ such that
$G(s) \quad=\quad\left[G_{1}(s)\right] \quad+\quad\left[G_{2}(s)\right]$
$\mathrm{G}(\mathrm{s})$ contains the N slowest modes (modes with the smallest absolute value) of G .
$\left[G_{1}(s)\right]:=\left(\widehat{A}_{11}, \widehat{B}_{1}, \widehat{C}_{1}, \widehat{D}_{1}\right)$ denotes the slow part of $G(s)$. The slow poles have low frequency and magnitude values.
$\left[G_{2}(s)\right]:=\left(\widehat{A}_{22}, \widehat{B}_{2}, \widehat{C}_{2}, \widehat{D}_{2}\right)$ denotes the fast part. The fast poles have high frequency and magnitude values.

The variable ns denotes the index where the modes will be split.
Use freqsep to separate slow and fast modes at a specified cutoff frequency instead of a specified number of modes.

References

M.G. Safonov, E.A. Jonckheere, M. Verma and D.J.N. Limebeer, "Synthesis of Positive Real Multivariable Feedback Systems", Int. J. Control, vol. 45, no. 3, pp. 817-842, 1987.

See Also

freqsep|modreal|schur
Introduced before R2006a

squeeze

Remove singleton dimensions for umat objects

Syntax

$B=$ squeeze (A)

Description

$B=$ squeeze(A) returns an array B with the same elements as A but with all the singleton dimensions removed. A singleton is a dimension such that $\operatorname{size}(\mathrm{A}, \operatorname{dim})==1$. 2-D arrays are unaffected by squeeze so that row vectors remain rows.

See Also

permute| reshape

Introduced before R2006a

uss/ssbal

Scale state/uncertainty while preserving uncertain input/output map of uncertain system

Syntax

```
usysout = ssbal(usys)
usysout = ssbal(usys,wc)
usysout = ssbal(usys,wc,FSflag)
usysout = ssbal(usys,wc,FSflag,BLTflag)
```


Description

usysout = ssbal(usys) yields a system whose input/output and uncertain properties are the same as usys, a uss object. The numerical conditioning of usysout is usually better than that of usys, improving the accuracy of additional computations performed with usysout. usysout is a uss object. The balancing algorithm uses mussv to balance the constant uncertain state-space matrices in discrete time. If usys is a continuous-time uncertain system, the uncertain state-space is mapped by using a bilinear transformation into discrete time for balancing.
usysout = ssbal (usys,wc) defines the critical frequency wc for the bilinear prewarp transformation from continuous time to discrete time. The default value of wc is 1 when the nominal uncertain system is stable and $1.25 *$ mxeig when it is unstable. mxeig corresponds to the value of the real, most positive pole of usys.
usysout $=$ ssbal (usys,wc, FSflag) sets the scaling flag FSflag to handle repeated uncertain parameters. Setting FSfl lag=1 uses full matrix scalings to balance the repeated uncertain parameter blocks. FSflag=0, the default, uses a single, positive scalar to balance the repeated uncertain parameter blocks.
usysout = ssbal (usys,wc,FSflag,BLTflag) sets the bilinear transformation flag, BLTflag. By default, BLTflag=1 transforms the continuous-time system usys to a discrete-time system for balancing. BLTflag=0 results in balancing the continuous-time state-space data from usys. Note that if usys is a discrete-time system, no bilinear transformation is performed.
ssbal does not work on an array of uncertain systems. An error message is generated to alert you to this.

Examples

Consider a two-input, two-output, two-state uncertain system with two real parameter uncertainties, p1 and p2.

```
p2=ureal('p2',-17,'Range',[-19 -11]);
p1=ureal('p1',3.2,'Percentage',0.43);
A = [-12 p1;.001 p2];
B = [120-809;503 24];
C = [.034 .0076; .00019 2];
usys = ss(A,B,C,zeros(2,2))
USS: 2 States, 2 Outputs, 2 Inputs, Continuous System
    p1: real, nominal = 3.2, variability = [-0.43 0.43]%, 1 occurrence
```

```
    p2: real, nominal = -17, range = [-19 -11], 1 occurrence
usys.NominalValue
a =
\begin{tabular}{lrr} 
& \(x 1\) & \(x 2\) \\
\(\times 1\) & -12 & 3.2 \\
\(\times 2\) & 0.001 & -17
\end{tabular}
b =
\begin{tabular}{rrr} 
& \(u 1\) & \(u 2\) \\
\(\times 1\) & 120 & -809 \\
\(\times 2\) & 503 & 24
\end{tabular}
C =
\begin{tabular}{lrr} 
& \(x 1\) & \(x 2\) \\
\(y 1\) & 0.034 & 0.0076 \\
y2 & 0.00019 & 2
\end{tabular}
d =
\begin{tabular}{lrr} 
& u1 & u2 \\
y1 & 0 & 0 \\
y2 & 0 & 0
\end{tabular}
Continuous-time model.
ssbal is used to balance the uncertain system usys.
usysout = ssbal(usys)
USS: 2 States, 2 Outputs, 2 Inputs, Continuous System
p1: real, nominal \(=3.2\), variability \(=[-0.430 .43] \%\),
1 occurrence
p2: real, nominal \(=-17\), range \(=[-19\)-11], 1 occurrence
usysout.NominalValue
\(\mathrm{a}=\)
\begin{tabular}{rrr} 
& \(x 1\) & \(x 2\) \\
\(\times 1\) & -12 & 0.3302 \\
\(\times 2\) & 0.009692 & -17
\end{tabular}
\(\mathrm{x} 2 \quad 0.009692 \quad-17\)
\(\mathrm{b}=\)
\begin{tabular}{rrr} 
& \(u 1\) & \(u 2\) \\
\(\times 1\) & 0.7802 & -5.26 \\
x2 & 31.7 & 1.512
\end{tabular}
C =
\begin{tabular}{lrr} 
& & \(x 1\) \\
\(y 1\) & 5.229 & 0.1206 \\
y2 & 0.02922 & 31.74
\end{tabular}
d =
\begin{tabular}{lrr} 
& u1 & u2 \\
y1 & 0 & 0 \\
y2 & 0 & 0
\end{tabular}
Continuous-time model.
```


See Also

c2d | canon \| d2c|mussv | mussvextract \| ss2ss

Introduced before R2006a

stack

Construct array by stacking uncertain matrices, models, or arrays

Syntax

```
umatout = stack(arraydim,umat1,umat2,...)
usysout = stack(arraydim,usys1,usys2,...)
```


Description

stack constructs an uncertain array by stacking uncertain matrices, models, or arrays along array dimensions of an uncertain array.
umatout $=$ stack(arraydim, umat1, umat2, . . .) produces an array of uncertain matrices, umatout, by stacking (concatenating) the umat matrices (or umat arrays) umat1, umat2,... along the array dimension arraydim. All models must have the same number of columns and rows. The column/row dimensions are not counted in the array dimensions.
umatout = stack(arraydim, usys1, usys2, ...) produces an array of uncertain models, ufrd or uss, or usysout, by stacking (concatenating) the ufrd or uss matrices (or ufrd or uss arrays) usys 1 , usys $2, \ldots$ along the array dimension arraydim. All models must have the same number of columns and rows (the same input/output dimensions). Note that the input/output dimensions are not considered for arrays.

Examples

Consider usys1 and usys2, two single-input/single-output uss models:

```
zeta = ureal('zeta',1,'Range',[0.4 4]);
wn = ureal('wn',0.5,'Range',[0.3 0.7]);
P1 = tf(1,[1 2*zeta*wn wn^2]);
P2 = tf(zeta,[1 10]);
```

You can stack along the first dimension to produce a 2-by-1 uss array.

```
stack(1,P1,P1)
USS: 2 States, 1 Output, 1 Input, Continuous System [array, 2 x 1]
    wn: real, nominal = 0.5, range = [0.3 0.7], 3 occurrences
    zeta: real, nominal = 1, range = [0.4 4], 1 occurrence
```

You can stack along the second dimension to produce a 1-by-2 uss array.

```
stack(2,P1,P2) % produces a 1-by-2 USS array.
USS: 2 States, 1 Output, 1 Input, Continuous System [array, 1 x 2]
        wn: real, nominal = 0.5, range = [0.3 0.7], 3 occurrences
    zeta: real, nominal = 1, range = [0.4 4], 1 occurrence
```

You can stack along the third dimension to produce a 1-by-1-by-2 uss array.
stack(3, P1, P2) \% produces a 1-by-1-by-2 USS array.
USS: 2 States, 1 Output, 1 Input, Continuous System
[array, $1 \times 1 \times 2]$
wn: real, nominal $=0.5$, range $=[0.3$ 0.7], 3 occurrences
zeta: real, nominal $=1$, range $=[0.4$ 4], 1 occurrence

See Also

append | blkdiag | horzcat | vertcat
Introduced before R2006a

symdec

Form symmetric matrix

Syntax

$x=\operatorname{symdec}(m, n)$

Description

symdec (m, n) forms an m-by-m symmetric matrix of the form

$$
\left[\begin{array}{cccc}
(n+1) & (n+2) & (n+4) & \ldots \\
(n+2) & (n+3) & (n+5) & \ldots \\
(n+4) & (n+5) & (n+6) & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right]
$$

This function is useful to define symmetric matrix variables. n is the number of decision variables.

Examples

Symmetric Matrix

Create a 4 -by- 4 symmetric matrix for an LMI problem in which $\mathrm{n}=2$. Display the matrix to verify its form.
$X=\operatorname{symdec}(4,2)$
$X=4 \times 4$

3	4	6	9
4	5	7	10
6	7	8	11
9	10	11	12

See Also
decinfo|skewdec
Introduced before R2006a

sysic

Build interconnections of certain and uncertain matrices and systems

Syntax

sysout $=$ sysic

Description

sysic requires that 3 variables with fixed names be present in the calling workspace: systemnames, inputvar and outputvar.
systemnames is a char containing the names of the subsystems (double, tf, zpk, ss, uss, frd, ufrd, etc) that make up the interconnection. The names must be separated by spaces with no additional punctuation. Each named variable must exist in the calling workspace.
inputvar is a char, defining the names of the external inputs to the interconnection. The names are separated by semicolons, and the entire list is enclosed in square brackets []. Inputs can be scalar or multivariate. For instance, a 3-component (x, y, z) force input can be specified with 3 separate names, Fx, Fy, Fz. Alternatively, a single name with a defined integer dimension can be specified, as in $F\{3\}$. The order of names in inputvar determines the order of inputs in the interconnection.
outputvar is a char, describing the outputs of the interconnection. Outputs do not have names-they are simply linear combinations of individual subsystem's outputs and external inputs. Semicolons delineate separate components of the interconnections outputs. Between semicolons, signals can be added and subtracted, and multiplied by scalars. For multivariable subsystems, arguments within parentheses specify which subsystem outputs are to be used and in what order. For instance, plant ($2: 4,1,9: 11$) specifies outputs $2,3,4,1,9,10,11$ from the subsystem plant. If a subsystem is listed in outputvar without arguments, then all outputs from that subsystem are used.
sysic also requires that for every subsystem name listed in systemnames, a corresponding variable, input_to_ListedSubSystemName must exist in the calling workspace. This variable is similar to outpu $\bar{t} v a \bar{r}$ - it defines the input signals to this particular subsystem as linear combinations of individual subsystem's outputs and external inputs.
sysout = sysic will perform the interconnection described by the variables above, using the subsystem data in the names found in systemnames. The resulting interconnection is returned in the output argument, listed above as sysout.

After running sysic the variables systemnames, inputvar, outputvar and all of the input_to_ListedSubSystemName will exist in the workspace. Setting the optional variable cleanupsysic to 'yes' will cause these variables to be removed from the workspace after sysic has formed the interconnection.

Examples

A simple system interconnection, identical to the system illustrated in the iconnect description. Consider a three-input, two-output LTI matrix T,

which has internal structure

Limitations

The syntax of sysic is limited, and for the most part is restricted to what is shown here. The iconnect interconnection object can also be used to define complex interconnections, and has a more flexible syntax.

Within sysic, error-checking routines monitor the consistency and availability of the subsystems and their inputs. These routines provide a basic level of error detection to aid the user in debugging.

See Also

iconnect

Introduced before R2006a

ucomplex

Create uncertain complex parameter

Syntax

A = ucomplex('NAME', nominalvalue)
A = ucomplex('NAME', nominalvalue,'Property1',Value1,...
'Property2', Value2,...)

Description

An uncertain complex parameter is used to represent a complex number whose value is uncertain. Uncertain complex parameters have a name (the Name property), and a nominal value (the NominalValue property).

The uncertainty (potential deviation from the nominal value) is described in two different manners:

- Radius (radius of disc centered at NominalValue)
- Percentage (disc size is percentage of magnitude of NominalValue)

The Mode property determines which description remains invariant if the NominalValue is changed (the other is derived). The default Mode is 'Radius' and the default radius is 1.

Property/Value pairs can also be specified at creation. For instance,
B = ucomplex('B',6-j,'Percentage',25)
sets the nominal value to $6-\mathrm{j}$, the percentage uncertainty to 25 and, implicitly, the Mode to 'Percentage'.

Examples

Sample Uncertain Complex Parameter

Compute 400 random samples of an uncertain complex parameter and visualize them in a plot.
Create an uncertain complex parameter with internal name A.

```
A = ucomplex('A',4+3*j)
A =
    Uncertain complex parameter "A" with nominal value 4+3i and radius 1.
```

The uncertain parameter's possible values are a complex disc of radius 1 , centered at $4+3 \mathrm{j}$. The value of A. percentage is 20 (radius is $1 / 5$ of the magnitude of the nominal value).

You can visualize the uncertain complex parameter by sampling and plotting the data.

```
sa = usample(A,400);
w = linspace(0,2*pi,200);
```

```
circ = sin(w) + j*cos(w);
rc = real(A.NominalValue+circ);
ic = imag(A.NominalValue+circ);
plot(real(sa(:)),imag(sa(:)),'o',rc,ic,'k-')
xlim([2.5 5.5])
ylim([1.5 4.5])
axis equal
```


See Also

get | ucomplexm | ultidyn | umargin | umat | ureal
Introduced before R2006a

ucomplexm

Create uncertain complex matrix

Syntax

M = ucomplexm('Name', NominalValue)
$M=$ ucomplexm('Name',NominalValue, 'WL', WLvalue, 'WR', WRvalue)
M = ucomplexm('Name',NominalValue,'Property',Value)

Description

M = ucomplexm('Name',NominalValue) creates an uncertain complex matrix representing a ball of complex-valued matrices, centered at a NominalValue and named Name.
$M=$ ucomplexm('Name',NominalValue, 'WL', WLvalue, 'WR', WRvalue) creates an uncertain complex matrix with weights WL and WR. Specifically, the values represented by M are all matrices H that satisfy norm(inv(M.WL)*(H - M.NominalValue)*inv(M.WR)) <= 1. WL and WR are square, invertible, and weighting matrices that quantify the size and shape of the ball of matrices represented by this object. The default values for WL and WR are identity matrices of appropriate dimensions.

Trailing Property/Value pairs are allowed, as in

```
M = ucomplexm('NAME',nominalvalue,'P1',V1,'P2',V2,...)
```

The property AutoSimplify controls how expressions involving the uncertain matrix are simplified. Its default value is 'basic', which means elementary methods of simplification are applied as operations are completed. Other values for AutoSimplify are 'off' ', no simplification performed, and 'full' which applies model-reduction-like techniques to the uncertain object.

Examples

Sample an Uncertain Complex Matrix

Create a ucomplexm with the name F, nominal value $\left[\begin{array}{lllll}1 & 2 & 3 ; & 4 & 5\end{array}\right]$, and weighting matrices WL = diag([.1.3]), WR = diag([.4 .8 1.2]).

```
F = ucomplexm('F',[1 2 3;4 5 6],'WL',diag([.1 .3]),...
    'WR',diag([.4 .8 1.2]))
F =
    Uncertain complex matrix "F" with 2 rows and 3 columns.
```

Sample the difference between the uncertain matrix and its nominal value at 80 points, yielding a 2-by-3-by-80 matrix typicaldev.

```
typicaldev = usample(F - F.NominalValue,80);
```

Plot histograms of the deviations in the $(1,1)$ entry and the $(2,3)$ entry of the complex matrix.
The absolute values of the $(1,1)$ entry and the $(2,3)$ entry are shown by histogram plots. Typical deviations in the $(1,1)$ entry should be about 10 times smaller than the typical deviations in the $(2,3)$ entry.

```
subplot(2,1,1);
td11 = squeeze(typicaldev(1,1,:));
hist(abs(td11));
xlim([0 .25])
title('Sampled F(1,1) - F(1,1).NominalValue')
subplot(2,1,2);
td23 = squeeze(typicaldev(2,3,:));
hist(abs(td23));
title('Sampled F(2,3) - F(2,3).NominalValue')
```


See Also

get | ucomplex | ultidyn | umargin | umat | ureal

Introduced before R2006a

ucover

Fit an uncertain model to set of LTI responses

Syntax

```
usys = ucover(Parray,Pnom,ord)
usys = ucover(Parray,Pnom,ord1,ord2,utype)
[usys,info] = ucover(Parray,...)
[usys_new,info_new] = ucover(Pnom,info,ord1_new,ord2_new)
```


Description

usys $=$ ucover(Parray, Pnom, ord) returns an uncertain model usys with nominal value Pnom and whose range of behaviors includes all responses in the LTI array Parray. The uncertain model structure is of the form usys $=\operatorname{Pnom}(1+W(s) \Delta(s))$, where

- Δ is an ultidyn object that represents uncertain dynamics with unit peak gain.
- W is a stable, minimum-phase shaping filter that adjusts the amount of uncertainty at each frequency.
ord is the number of states (order) of W. Pnom and Parray can be $\mathrm{ss}, \mathrm{tf}, \mathrm{zpk}$, or zpk models. usys is of class ufrd when Pnom is an frd model and is an uss model otherwise.
usys $=$ ucover(Parray,Pnom,ord1,ord2,utype) specifies the order ord1 and ord2 of each diagonal entry of $W 1$ and $W 2$, where $W 1$ and $W 2$ are diagonal, stable, minimum-phase shaping filters. utype specifies the uncertain model structure, as described in "Uncertain Model Structures" on page 1-496, and can be 'InputMult' (default), 'OutputMult' or 'Additive'. ord1 and ord2 can be:
- [], which implies that the corresponding filter is 1 .
- Scalar, which implies that the corresponding filter is scalar-valued.
- Vectors with as many entries as diagonal entries in $W 1$ and $W 2$.
[usys,info] = ucover(Parray,...) returns a structure info that contains optimization information. info.W1opt and Info.W2opt contain the values of $W 1$ and $W 2$ computed on a frequency grid and info.W1 and info.W2 contain the fitted shaping filters W1 and W2.
[usys_new,info_new] $=$ ucover(Pnom,info,ord1_new, ord2_new) improves the fit using initial filter values in info and new orders ord1_new and ord2_new of $W 1$ and $W 2$. This syntax speeds up command execution by reusing previously computed information. Use this syntax when you are changing filter orders in an iterative workflow.

Examples

Fit Uncertain Model to Array of LTI Responses

Fit an uncertain model to an array of LTI responses. The responses might be, for example, the results of multiple runs of acquisition of frequency response data from a physical system.

For the purpose of this example, generate the frequency response data by creating an array of LTI models and sampling the frequency response of those models.

```
Pnom = tf(2,[1 -2]);
p1 = Pnom*tf(1,[.06 1]);
p2 = Pnom*tf([-.02 1],[.02 1]);
p3 = Pnom*tf(50^2,[1 2*.1*50 50^2]);
array = stack(1,p1,p2,p3);
Parray = frd(array,logspace(-1,3,60));
```

The frequency response data in Parray represents three separate data acquisition experiments on the system.

Plot relative errors between the nominal plant response and the three models in the LTI array.
relerr $=$ (Pnom-Parray) $/$ Pnom;
bodemag(relerr)

If you use a multiplicative uncertainty model structure, the magnitude of the shaping filter should fit the maximum relative errors at each frequency.

Try a 1st-order shaping filter to fit the maximum relative errors.

```
[P,Info] = ucover(Parray,Pnom,1);
```

P is an uncertain state-space (uss) model that captures the uncertainty as a ultidyn uncertain dynamics block.

```
P.Uncertainty
ans = struct with fields:
    Parray_InputMultDelta: [1x1 ultidyn]
```

The Info structure contains other information about the fit, including the shaping filter. Plot the response to see how well the shaping filter fits the relative errors.
bodemag(relerr,'b--',Info.W1,'r',\{0.1,1000\});

The plot shows that the filter W 1 is too conservative and exceeds the maximum relative error at most frequencies. To obtain a tighter fit, rerun the function using a 4th-order filter.

```
[P,Info] = ucover(Parray,Pnom,4);
```

Evaluate the fit by plotting the Bode magnitude plot.

```
bodemag(relerr,'b--',Info.W1,'r',{0.1,1000});
```


Bode Diagram

This plot shows that for the 4th-order filter, the magnitude of W1 closely matches the minimum uncertainty amount.

More About

Uncertain Model Structures

When fitting the responses of LTI models in Parray, the gaps between Parray and the nominal response Pnom of the uncertain model are modeled as uncertainty on the system dynamics. To model the frequency distribution of these unmodeled dynamics, ucover measures the gap between Pnom and Parray at each frequency and selects a shaping filter W whose magnitude approximates the maximum gap between Pnom and Parray. The following figure shows the relative gap between the nominal response and six LTI responses, enveloped using a second-order shaping filter.

The software then sets the uncertainty to $W \cdot \Delta$, where Δ is an ultidyn object that represents unitgain uncertain dynamics. This ensures that the amount of uncertainty at each frequency is specified by the magnitude of W and therefore closely tracks the gap between Pnom and Parray.

There are three possible uncertainty model structures:

- Input Multiplicative of the form usys $=$ Pnom $\times\left(I+W_{1} \times \Delta \times W_{2}\right)$.
- Output Multiplicative of the form usys $=(I+W 1 \times \Delta \times W 2) \times$ Pnom.
- Additive of the form usys $=$ Pnom $+W 1 \times \Delta \times W_{2}$.

Use additive uncertainty to model the absolute gaps between Pnom and Parray, and multiplicative uncertainty to model relative gaps.

Note For SISO models, input and output multiplicative uncertainty are equivalent. For MIMO systems with more outputs than inputs, the input multiplicative structure may be too restrictive and not adequately cover the range of models.

The model structure usys $=$ Pnom $\times(I+W \times \Delta)$ that you obtain using usys $=$ ucover(Parray, Pnom, ord), corresponds to $W_{1}=W \times I$ and $W_{1}=1$.

Algorithms

The ucover command designs the minimum-phase shaping filters W_{1} and W_{2} in two steps:
1 Computes the optimal values of W_{1} and W_{2} on a frequency grid.

2 Fits W_{1} and W_{2} values with the dynamic filters of the specified orders using the fitmagfrd command.

See Also

frd|ss|tf|usample|zpk

Topics

"Modeling a Family of Responses as an Uncertain System"
"Simultaneous Stabilization Using Robust Control"
"First-Cut Robust Design"
Introduced in R2009b

udyn

Create unstructured uncertain dynamic system object

Syntax

n = udyn('name',iosize);

Description

$\mathrm{n}=$ udyn('name',iosize) creates an unstructured uncertain dynamic system class, with input/ output dimension specified by iosize. This object represents the class of completely unknown multivariable, time-varying nonlinear systems.

For practical purposes, these uncertain elements represent noncommuting symbolic variables (placeholders). All algebraic operations, such as addition, subtraction, and multiplication (i.e., cascade) operate properly, and substitution (with usubs) is allowed.

The analysis tools (e.g., robstab) do not currently handle these types of uncertain elements. Therefore, these elements do not provide a significant amount of usability, and their role in the toolbox is small.

Examples

You can create a 2-by-3 udyn element and check its size and properties.

```
N = udyn('N',[2 3])
Uncertain Dynamic System: Name N, size 2x3
size(N)
ans =
    2 3
get(N)
    Name: 'N'
    NominalValue: [2x3 double]
    AutoSimplify: 'basic'
```


See Also

ucomplex | ucomplexm |ultidyn|umargin|umargin|ureal

Introduced before R2006a

ufind

Find uncertain variables in Simulink model

Syntax

```
uvars = ufind('mdl')
[uvars,pathinfo] = ufind('mdl')
uvars = ufind(usys_1,usys_2,...)
```


Description

uvars = ufind ('mdl') finds Uncertain State Space blocks in the Simulink model mdl. It returns a structure uvars that contains all uncertain variables associated with the Uncertain State Space blocks. Each uncertain variable is a ureal, umargin or ultidyn object and is listed by name in uvars.
[uvars,pathinfo] = ufind('mdl') returns a cell array pathinfothat contains paths to the Uncertain State Space blocks and the corresponding uncertain variables in the block. The first column of pathinfo lists the block paths through the model hierarchy and the second column lists the uncertain variables associated with the block. Use pathinfo to verify that all Uncertain State Space blocks in the model mdl have been identified.
uvars = ufind(usys_1,usys_2,...) collects all uncertain variables referenced by the uncertain model usys_n. usys_n can be uss or ufrd models. Use this syntax as an alternative to querying the model itself, when you know the uncertain models that the Uncertain State Space blocks use.
ufind can find Uncertain State Space blocks inside Masked Subsystems, Library Links, and Model References but not inside Accelerated Model References. ufind errors out if the same uncertain variable name has different definitions in the model. For example, if your model contains two Uncertain State Space blocks where the uncertain system variables define the same uncertain variable 'unc_par" as ultidyn('unc_par',[1 1]) and ureal('unc_par',5), such an error occurs.

Examples

Find all Uncertain State Space blocks and uncertain variables in a Simulink model:
1 Open the Simulink model.
open_system('usim_model')
The model, as shown in the following figure, contains three Uncertain State Space blocks named Unmodeled Plant Dynamics, Plant, and Sensor Gain. These blocks depend on three uncertain variables named input_unc, unc_pole and sensor_gain.

2 Use ufind to find all Uncertain State Space blocks and uncertain variables in the model.
[uvars,pathinfo] = ufind('usim_model')
3 Type uvars to view the structure uvars. MATLAB returns the following result:
uvars =
input_unc: [1x1 ultidyn]
sensor_gain: [1x1 ureal]
unc_pole: [1x1 ureal]
Each uncertain variable is a ureal or ultidyn object and is listed by name in uvars.
4 View the Uncertain State Space block paths and uncertain variables.
a Type pathinfo (: , 1) to view paths of the Uncertain State Space blocks in the model. MATLAB returns the following result:
ans $=$
'usim_model/Plant'
'usim_model/Sensor Gain'
'usim_model/Unmodeled Plant Dynamics'
b Type pathinfo(: 2) to view the uncertain variables referenced by each Uncertain State Space block. MATLAB returns the following results:
ans $=$
'unc_pole'
'sensor_gain'
'input_unc'

Tutorials

"Simulate Uncertain Model at Sampled Parameter Values"
"Vary Uncertain Values Across Multiple Uncertain Blocks"
Robustness Analysis in Simulink

How To

"Simulate Uncertainty Effects"

See Also

Uncertain State Space \| usample
Introduced in R2009b

ufrd

Uncertain frequency response data model

Syntax

```
ufrd_sys = ufrd(M,freqs)
ufrd_sys = ufrd(M,freqs,frequnits)
ufrd_sys = ufrd(M,freqs,frequnits,timeunits)
```


Description

Uncertain frequency response data models (ufrd) arise when combining numeric frd models with uncertain models such as ureal, ultidyn, umargin, or uss. A ufrd model keeps track of how the uncertain elements affect the frequency response. Use ufrd for robust stability and worst-case performance analysis.

There are three ways to construct a ufrd model:
1 Combine numeric frd models with uncertain models using model arithmetic. For example:
sys $=$ frd(rand(100,1),logspace(-2,2,100));
k = ureal('k',1);
D = ultidyn('Delta',[11]);
ufrd_sys = k*sys*(1+0.1*D)
$u f r d _s y s$ is a ufrd model with uncertain elements k and D.
2 ufrd_sys = ufrd(M,freqs) converts the dynamic system model (Control System Toolbox) or static model (Control System Toolbox) M to ufrd. If M contains Control Design Blocks that do not represent uncertainty, these blocks are replaced by their current value. (To preserve both tunable and uncertain Control Design Blocks, use genfrd instead.)

Use ufrd_sys = ufrd(M, freqs, frequnits) to specify the frequency units of the frequencies in freqs. The argument frequits can take the following values:

- 'rad/TimeUnit'
- 'cycles/TimeUnit'
- 'rad/s'
- 'Hz'
- 'kHz'
- 'MHz'
- 'GHz'
- 'rpm'

Use ufrd_sys = ufrd(M,freqs,frequnits, timeunits) to specify the time unit of ufrd_sys when M is a static model. timeunits can take the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

3 Use frd to construct a ufrd model from an uncertain matrix (umat) representing uncertain frequency response data. For example:

```
a = ureal('delta',1,'percent',50);
freq = logspace(-2,2,100);
RespData = rand(1,1,100) * a;
usys = frd(RespData,freq,0.1)
```


Examples

Uncertain Frequency Response Model

Compute the uncertain frequency response of an uncertain system with both parametric uncertainty (ureal) and uncertain gain and phase (umargin). Create the uncertain frequency response by building a uss model using uncertain dynamics, and then extracting its response at a specified set of frequencies.

```
p1 = ureal('p1',5,'Range',[2 6]);
p2 = ureal('p2',3,'Plusminus',0.4);
F = umargin('F',1.2);
A = [-p1 0;p2 -p1];
B = [0;p2];
C = [1 1];
usys = uss(A,B,C,0)*F;
freqs = logspace(-2,2,60);
usysfrd = ufrd(usys,freqs);
```

Plot random samples and the nominal value of the uncertain frequency response.

```
rng(0); % for reproducibility
bode(usysfrd,'r',usysfrd.NominalValue,'b+')
```


See Also

frd|frdfun | genfrd|ss|uss

Topics

"Control Design Blocks" (Control System Toolbox)
Introduced before R2006a

ulinearize

Linearize Simulink model with Uncertain State Space block

Syntax

```
ulin = ulinearize('sys',io)
ulin = ulinearize('sys',op,io)
ulin = ulinearize('sys',op,io,options)
ulin = ulinearize('sys',op)
ulin_block = ulinearize('sys',op,'blockname')
[ulin,op] = ulinearize('sys',snapshottimes,...);
ulin = ulinearize('sys','StateOrder',stateorder)
```


Description

ulin = ulinearize('sys',io) linearizes the Simulink model sys that contains Uncertain State Space blocks and returns a linear time-invariant uncertain system ulin. ulin is an uss object. io is an I/O object that specifies linearization I/O points in the model. Use get linio or linio to create io. The linearization occurs at the operating point specified in the model.
ulin=ulinearize('sys',io,op) linearizes the model at the operating point specified in the operating point object op. Use operpoint or findop to create op. Both op and io are associated with the same model sys.
ulin=ulinearize('sys',io,op,options) takes a linearization options object options that contains several options for linearization and returns linear time-invariant uncertain system ulin. Use linearizeOptions to create options.
ulin=ulinearize('sys' op) linearizes the model sys at the operating point specified in the operating point object op. The software uses root-level inport and outport blocks in sys as I/O points for linearization.
ulin_block=ulinearize('sys',op,'blockname',...) takes the name of a block blockname in the model sys and returns a linear time-invariant uncertain system ulin_block. You can also specify a fourth argument options to provide options for the linearization.
[ulin,op] = ulinearize('sys', snapshottimes, ...) creates operating points for linearization by simulating the model and taking snapshots of the system's states and inputs at times specified in the vector snapshottimes. ulin is a set of linear time-invariant uncertain systems and op is the set of operating point objects used in linearization. You can also specify I/O object for linearization, or a block name. If you do not specify an I/O object or block name, the linearization uses root-level inport and outport blocks in the model. You can also supply an additional argument, options, to provide options for linearization.
ulin = ulinearize('sys','StateOrder',stateorder) creates a linear-time-invariant uncertain system ulin, whose states are in a specified order. Specify the state order in the cell array
stateorder by entering the names of the blocks containing states in the model. For all blocks, you can enter block names as the full block path. For continuous blocks, you can alternatively enter block names as the user-defined unique state name.

Examples

Compute uncertain linearization of a Simulink model containing Uncertain State Space blocks:

```
% Define uncertain variables and uncertain system variables
% to use in Uncertain State Space blocks.
unc_pole = ureal('unc_pole',-5,'Range',[-10 -4]);
plant = ss(unc_pole,5,1,0);
wt = makeweight(0.25,130,2.5);
input_unc = ultidyn('input_unc',[1 1]);
sensor_pole = ureal('sensor_pole',-20,'Range',[-30 -10]);
sensor = tf(1,[1/(-sensor_pole) 1]);
% Open Simulink model. The model contains three Uncertain State
% Space blocks named Unmodeled Plant Dynamics, Uncertain Plant and
% Uncertain Sensor, and linearization I/O points.
open_system('rct_ulinearize_uss')
% Obtain linearization I/O points.
mdl = 'rct_ulinearize_uss';
io = getliñio(mdl);
% Compute the uncertain linearization of the model.
ulin = ulinearize(mdl,io)
% MATLAB returns an uss object with 5 states.
```


Tutorials

"Linearize Simulink Block to Uncertain Model"
Linearization of Simulink Models with Uncertainty

How To

"Obtain Uncertain State-Space Model from Simulink Model"

See Also

udyn |ultidyn | ureal |uss

Introduced in R2009b

ultidyn

Create uncertain linear time-invariant object

Syntax

H = ultidyn('Name',iosize)
H = ultidyn('Name',iosize,'Property1',Value1,'Property2',Value2,...)

Description

H = ultidyn('Name', iosize) creates an uncertain linear, time-invariant objects are used to represent unknown dynamic objects whose only known attributes are bounds on their frequency response. Uncertain linear, time-invariant objects have a name (the Name property), and an input/ output size (ioSize property).

Trailing Property/Value pairs are allowed in the construction.
H = ultidyn('name',iosize,'Property1',Value1,'Property2',Value2,...)
The property Type is 'GainBounded ' (default) or 'PositiveReal', and describes in what form the knowledge about the object's frequency response is specified.

- If Type is 'GainBounded ', then the knowledge is an upper bound on the magnitude (i.e., absolute value), namely abs $(\mathrm{H})<=$ Bound at all frequencies. The matrix generalization of this is $\|H\|<=$ Bound.
- If Type is 'PositiveReal' then the knowledge is a lower bound on the real part, namely Real (H) >= Bound at all frequencies. The matrix generalization of this is $\mathrm{H}+\mathrm{H}^{\prime}>=2 *$ Bound

The property Bound is a real, scalar that quantifies the bound on the frequency response of the uncertain object as described above.

The property SampleStateDimension is a positive integer, defining the state dimension of random samples of the uncertain object when sampled with usample. The default value is 3 .

The property AutoSimplify controls how expressions involving the uncertain matrix are simplified. Its default value is 'basic', which means elementary methods of simplification are applied as operations are completed. Other values for AutoSimplify are 'off', no simplification performed, and 'full' which applies model-reduction-like techniques to the uncertain object.

Use the property SampleMaxFrequency to limit the natural frequency for sampling. Randomly sampled uncertain dynamics are no faster than the specified value. The default value is Inf (no limit).

To model frequency-dependent uncertainty levels, multiply the ultidyn object by a suitable shaping filter. For example, for a ultidyn object dH , the following commands specify an uncertainty bound that increases from 0.1 at low frequencies to 10 at high frequencies.

```
W = tf([1 .1],[.l 1]);
dH = W*dH;
```


Examples

MIMO Uncertain Dynamics

Create a ultidyn object with internal name ' H ', norm bounded by 7 , with three inputs and two outputs.

```
H = ultidyn('H',[2 3],'Bound',7)
H =
    Uncertain LTI dynamics "H" with 2 outputs, 3 inputs, and gain less than 7.
```

Typically, when you use uncertain dynamics, you apply a weighting function to emphasize the uncertain contribtion in a certain bandwidth. For instance, suppose that the behavior of your system is modestly uncertain (say 10\%) at low frequencies, while the high-frequency behavior beyond 20 $\mathrm{rad} / \mathrm{s}$ is not accurately modeled. Use makeweight to create a shaping filter that captures this behavior.
$W=$ makeweight(.1,20,50); bodemag (W)

Apply the weighting filter at the block outputs. Examine samples of the unmodeled dynamics.

```
Hw = blkdiag(W,W)*H;
bodemag(Hw)
```

Bode Diagram

Nyquist Plot of Uncertain Dynamics

Create a scalar ultidyn object with an internal name ' B ', whose frequency response has a real part greater than 2.5 .

```
B = ultidyn('B',[1 1],'Type','PositiveReal','Bound',2.5)
B =
    Uncertain LTI dynamics "B" with 1 outputs, 1 inputs, and positive real bound of 2.5.
```

Change the SampleStateDimension to 5, and plot the Nyquist plot of 30 random samples.

```
B.SampleStateDimension = 5;
nyquist(usample(B,30))
```


Compatibility Considerations

Default value of SampleStateDimension property changed

Behavior changed in R2020a
The default value of the SampleStateDimension property is now 3. Prior to R2020a, the default value was 1.

SampleStateDimension sets the number of states in random samples of uncertain dynamics taken with analysis commands such as usample and bode. With SampleStateDimension $=1$, all Nyquist plots of sampled dynamics touch the gain bound at either $(-1,0)$ (frequency $=0)$ or $(1,0)$ (frequency $=$ Inf). Higher SampleStateDimension yields points of contact at other frequencies, meaning better coverage of worst-case possibilities. (The odds of hitting a worst-case value by random sampling is still very low. You can use sampling to get a rough idea of the effects of uncertainty, but for rigorous worst-case analysis, use commands such as wcgain and wcdiskmargin.) For an example of the effect of SampleStateDimension, see "Generate Samples of Uncertain Systems".

If you have code that relies on the default value of SampleStateDimension being 1, update your code to explicitly set the property.

See Also

get | umargin | ureal |uss

Introduced before R2006a

umargin

Model gain and phase uncertainty

Description

Use the umargin control design block to model gain and phase variations in feedback loops. Modeling gain and phase variations in your system lets you verify stability margins during robustness analysis or enforce them during robust controller design.

To add gain and phase uncertainty to a feedback loop, you incorporate umargin blocks into an uncertain state-space (uss) model of the closed-loop system. umargin is a SISO control design block, representing gain and phase variation at a single location in a single feedback loop. To model gain and phase uncertainty in MIMO feedback systems, insert a separate umargin object at each location in the system at which you want to introduce gain and phase uncertainty.
umargin models gain and phase variations as a factor F multiplying the open-loop response L. This factor takes values in a disk centered on the real axis and containing $F=1$. You specify this disk by its intersection DGM = [gmin, gmax] with the real axis, which represents the relative amount of gain variation around the nominal value $F=1$. To specify both gain and phase uncertainty, first use getDGM to obtain a DGM value that describes a disk that captures both your specified gain and phase ranges. For more information about the disk-based uncertainty model, see "Algorithms" on page 1529.

When you have a uss model containing umargin control design blocks, you can perform robustness and worst-case analysis to examine how gain and phase variation affects the response of the system. For instance, use robstab and robgain to analyze the robust stability and robust performance of a system with gain and phase uncertainty. Use wcgain and wcsigmaplot to examine the worst-case responses of the system.

Requiring robust stability for a closed-loop system with umargin gain and phase uncertainty is equivalent to enforcing a disk-based gain margin [gmin, gmax] and corresponding phase margin. Therefore, you can use umargin blocks to enforce suitable disk margins when designing robust controllers with musyn.

Creation

Syntax

F = umargin(name, DGM)
F = umargin(name, GM)
F = umargin(__ , Name, Value)

Description

F = umargin (name, DGM) models relative gain uncertainty in the range DGM = [gmin, gmax] with gmin <1 and gmax >1. The gain modeled by F varies in this range for phase held at its nominal value. When you have both gain and phase uncertainty, use getDGM to find the corresponding DGM. This syntax also sets the Name property of F.
$F=$ umargin(name, GM) is the same as umargin(name, [1/GM, GM]). This syntax specifies a gain that can increase or decrease by a factor GM in the absence of phase uncertainty. The corresponding amount of phase uncertainty is determined by the disk-based uncertainty model that umargin uses (see "Algorithms" on page 1-529).
$F=$ umargin (__, Name, Value) sets additional properties on page 1-514 of F using name-value pairs. For example, $F=$ umargin('F',[0.8,1.4],'InputName','u0','OutputName','u') creates a umargin block and sets the input and output names for use with connect. Enclose each property name in quotes.

Input Arguments

DGM - Range of relative gain variation
two-element vector
Range of relative gain variation, specified as a two-element vector of the form [gmin, gmax], where gmin <1 and gmax >1. For instance, DGM = [0.8 1.5] means that the modeled gain can vary between 80% and 150% of its nominal value (that is, change by a factor between 0.8 and 1.5). gmin can be negative, defining a range of relative gain variation that includes a change in sign.

The modeled uncertainty includes the corresponding phase variation determined by the disk-based uncertainty model (see "Algorithms" on page 1-529). To get the gain range DGM that best represents the gain and phase variation that you want to model, use getDGM.

GM - Amount of gain increase or decrease

scalar
Amount of gain increase or decrease, specified as a scalar. For instance, if you use $\mathrm{GM}=2$, then the umargin block represents a gain that can increase or decrease by a factor of two.
umargin (name, GM) is equivalent to umargin (name, [1/GM, GM]). The resulting modeled uncertainty includes the corresponding phase variation determined by the disk-based uncertainty model (see "Algorithms" on page 1-529).

Properties

GainChange - Range of relative gain variation

two-element vector
Range of relative gain variation in absolute units, specified as a two-element vector of the form gmin, gmax, where gmin <1 and gmax >1. For example GainChange $=[0.8,1.5]$ means that the gain can vary between 80% and 150% of its nominal value. gmin can be negative, which models possible sign changes in the loop gain.

The relationship between this property and the PhaseChange, DiskMargin, and Eccentricity properties is determined by the disk-based uncertainty model that umargin uses (see "Algorithms" on page 1-529). If you change the value of this property on an existing umargin block, the other properties are automatically updated.

PhaseChange - Amount of phase variation

two-element vector
This property is read-only.

Amount of phase variation in degrees, specified as two-element vector of the form [$-\mathrm{pm}, \mathrm{pm}$]. The value of this property is determined by the value of GainChange and the disk-based uncertainty model that umargin uses (see "Algorithms" on page 1-529).
Example: [-30, 30]

DiskMargin - Normalized uncertainty level
 positive scalar

Normalized uncertainty level, specified as a positive scalar. This value is the parameter α that sets the size of the uncertainty disk (see "Algorithms" on page 1-529).

The relationship between this property and the GainChange, PhaseChange, and Eccentricity properties is determined by the disk-based uncertainty model that umargin uses. If you change the value of this property on an existing umargin block, the other properties are automatically updated.

Example: 0.5

Eccentricity - Eccentricity of modeled uncertainty

scalar
Eccentricity of the modeled uncertainty disk, specified as a scalar value. The eccentricity skews the modeled gain variation toward gain increase or decrease.

- Eccentricity $=0$ models a balanced gain range [gmin, gmax], with gmin $=1 /$ gmax.
- Positive Eccentricity models a varying gain that can increase more than it can decrease, gmax $>1 / g m i n)$. For instance, GainChange $=[0.8,2]$ corresponds to a positive Eccentricity value, because the gain can increase by 100% but decrease by only 20%.
- Negative Eccentricity models a varying gain that can decrease more than it can increase, gmin $<1 /$ gmax. For instance, GainChange $=[0.5,1.2]$ corresponds to a negative Eccentricity value, because the can decrease by 50% but increase by only 20%.

The larger the absolute value of Eccentricity, the more the gain range is skewed. For additional details about eccentricity and how it affects the disk-based uncertainty model, see "Stability Analysis Using Disk Margins".

The relationship between this property and the GainChange, PhaseChange, and DiskMargin properties is determined by the disk-based uncertainty model that umargin uses (see "Algorithms" on page 1-529). If you change the value of this property on an existing umargin block, the other properties are automatically updated.

SampleStateDimension - Number of states in random samples

3 (default) | positive integer
Number of states in random samples of the block, specified as an integer. Some analysis commands such as usample and bode take random samples of uncertain dynamics. This property determines the number of states in the samples. For more information about how sampling of dynamic uncertainty works, see "Generate Samples of Uncertain Systems".

SampleMaxFrequency - Maximum frequency of random samples

Inf (default) | positive scalar
Maximum frequency of random samples, specified as a positive scalar value. Randomly sampled uncertain dynamics are no faster than the specified value.

NominalValue - Nominal value

ss model (default)
This property is read-only.
Nominal value, specified as a state-space model representing a SISO static gain of 1 ($\mathrm{A}, \mathrm{B}, \mathrm{C}=0, \mathrm{D}=$ 1). The nominal value of a umargin block is always 1 (no gain and phase variation) regardless of the range of gain and phase variations the block represents.

AutoSimplify - Block simplification level

'basic' (default)|'full'|'off'
Block simplification level, specified as 'basic', 'full', or 'off'. In general, when you combine uncertain elements to create uncertain state-space models, the software automatically applies techniques to eliminate redundant copies of the uncertain elements. (See simplify). Use this property to specify the simplification applied when you use model arithmetic or interconnection techniques with the uncertain block.

- 'basic' - Apply elementary simplification method after each arithmetic or interconnection operation.
- ' full ' - Apply techniques similar to model reduction.
- 'off' - Perform no simplification.

Name - Name of uncertain element

character vector
Name of uncertain element, specified as a character vector. When you create an uncertain statespace (uss or genss) model using uncertain control design blocks, the software tracks the blocks using the name you specify in this property, not the variable name in the MATLAB workspace. For example, if you create a umargin block using $F=$ umargin('um' , 2), and combine the block with a numeric LTI model, the Blocks property of the resulting uss model lists the uncertain control design block um.

Ts - Sample time

0 (default) | - 1 | positive scalar
Sample time, specified as:

- 0 - For continuous-time models.
- Positive scalar value - For discrete-time models. Specify the sample time in the units given in the TimeUnit property of the model.
- -1 - For discrete-time models with unspecified sample time.

Changing this property does not resample the block.

TimeUnit - Model time units

'seconds' (default)|'minutes'|'milliseconds ' | ...
Model time units, specified as one of these values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

You can specify TimeUnit using a string, such as "hours", but the time units are stored as a character vector, 'hours'.

Model properties such as sample time Ts, InputDelay, OutputDelay, and other time delays are expressed in the units specified by TimeUnit. Changing this property has no effect on other properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

InputName - Name of input channel
 \{ ' ' \} (default) | cell array containing a character vector

Name of input channel, specified as a cell array containing a character vector. You can set InputName using a character vector, such as F. InputName $=$ ' u ', or using a string, such as F. InputName $=$ " u ". Either way, the input name is stored as a cell array containing a character vector, \{'u'\}.

InputUnit - Units of input signal

\{' '\} (default) | cell array containing a character vector
Units of input signal, specified as a cell array containing a character vector. Use InputUnit to keep track of the units each input signal is expressed in. InputUnit has no effect on system behavior. You can set InputUnit using a character vector, such as F.InputUnit $=$ ' V ', or using a string, such as F.InputUnit $=$ "V". Either way, the input name is stored as a cell array containing a character vector, \{'V'\}.

InputGroup - Input channel groups

structure with no fields (default) | structure
Input channel groups, specified as a structure where the fields are the group names and the values are the indices of the input channels belonging to the corresponding group. Because umargin blocks are always SISO, you do not need to specify input groups.

OutputName - Name of output channel

\{ ' ' $\}$ (default) | cell array containing a character vector
Name of output channel, specified as a cell array containing a character vector. You can set OutputName using a character vector, such as F.OutputName = 'y', or using a string, such as F.OutputName $=" y$ ". Either way, the output name is stored as a cell array containing a character vector, $\left\{{ }^{\prime} y^{\prime}\right\}$.

OutputUnit - Units of output signal

\{ ' ' $\}$ (default) | cell array containing a character vector

Units of output signal, specified as a cell array containing a character vector. Use OutputUnit to keep track of the units each output signal is expressed in. OutputUnit has no effect on system behavior. You can set OutputUnit using a character vector, such as F.OutputUnit = 'V', or using a string, such as F.OutputUnit = "V". Either way, the output name is stored as a cell array containing a character vector, \{ 'V'\}.

OutputGroup - Output channel groups

structure with no fields (default) | structure
Output channel groups, specified as a structure where the fields are the group names and the values are the indices of the input channels belonging to the corresponding group. Because umargin blocks are always SISO, you do not need to specify output groups.

Notes - Text notes about model

[0×1 string] (default) \mid string \mid cell array of character vector
Text notes about the model, stored as a string or a cell array of character vectors. The property stores whichever of these two data types you provide. For instance, suppose that sys1 and sys2 are dynamic system models, and set their Notes properties to a string and a character vector, respectively.

```
sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes
ans =
    "sys1 has a string."
ans =
    'sys2 has a character vector.'
UserData - Data associated with model
[ ] (default) | any data type
```

Data of any kind that you want to associate and store with the model, specified as any MATLAB data type.

Object Functions

Many functions that work on numeric LTI models also work on uncertain control design blocks such as umargin. These include model interconnection functions such as connect and feedback, and linear analysis functions such as bode and stepinfo. Some functions that generate plots, such as bode and step, plot random samples of the uncertain model to give you a sense of the distribution of uncertain dynamics. When you use these commands to return data, however, they operate on the nominal value of the system only. The following lists contain a representative subset of the functions you can use with umargin models.

Model Interconnection

feedback Feedback connection of multiple models
connect Block diagram interconnections of dynamic systems
series Series connection of two models
parallel Parallel connection of two models

Robustness and Worst-Case Analysis

uscale Scale uncertainty of block or system
plot (umargin) Visualize gain and phase uncertainty of a umargin block
usample Generate random samples of uncertain or generalized model

Linear Analysis

step Step response plot of dynamic system; step response data bode Bode plot of frequency response, or magnitude and phase data

Examples

Gain and Phase Variation in SISO Loop

Create a model of a SISO control loop, with gain uncertainty of $\pm 6 \mathrm{~dB}$ and phase uncertainty of $\pm 30^{\circ}$. Use open-loop transfer function

$$
\begin{aligned}
L & =\frac{3.5}{s^{3}+2 s^{2}+3 s} \\
L & =\operatorname{tf}\left(2.5,\left[\begin{array}{llll}
1 & 2 & 3 & 0
\end{array}\right]\right)
\end{aligned}
$$

To model the uncertainty, first use getDGM to convert the gain and phase variation into a disk-based gain-margin range. Because the gain can increase or decrease by the same amount, you can use the ' balanced ' option to model a disk of uncertainty that is symmetric around the nominal value.

```
GM = db2mag(6);
PM = 30;
DGM = getDGM(GM,PM,'balanced')
DGM = 1\times2
    0.5012 1.9953
```

DGM defines a disk of uncertainty with gain variations in the range given by DGM, and phase variations determined by the geometry of the disk. Use DGM to create a umargin block.

```
F = umargin('F',DGM)
F =
    Uncertain gain/phase "F" with relative gain change in [0.501,2] and phase change of }\pm36.8\mathrm{ degr
```

F represents the smallest uncertainty disk that can capture both the target gain and phase variation. The actual phase variation modeled by F is a little bigger than the target range of $\pm 30^{\circ}$. To visualize the full range of gain and phase variations represented by F, including simultaneous gain and phase variations, use plot.
plot(F)

The right plot shows the range of values in the complex plane that the multiplicative factor F can take. The size of the disk determines the amount of variation. The shaded region on the left plot shows the simultaneous variations of gain and phase encompassed in F. For more details about this uncertainty model, see "Stability Analysis Using Disk Margins".

To incorporate the gain and phase uncertainty into a model of the closed-loop system, insert it into the feedback loop as a multiplicative factor on the open-loop response.


```
T = feedback(L*F,1)
T =
    Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 3 states.
    The model uncertainty consists of the following blocks:
        F: Uncertain gain/phase, gain x [0.501,2], phase \pm 36.8 deg, 1 occurrences
```

Type "T.NominalValue" to see the nominal value, "get(T)" to see all properties, and "T.Uncertain

The result is an uncertain state-space (uss) model with one control design block, F. Examine the effect of the modeled gain and phase uncertainty on the step response of the closed-loop system.
figure;
rng default \% for reproducibility
step (T)

You can perform addition analysis with this model, such as analyzing the system robustness against the modeled gain and phase variation with robstab. Or, you can use musyn to design a robust controller for the uncertain system L*F. For examples, see

- "Model Gain and Phase Uncertainty in Feedback Loops"
- "Robust Controller for Spinning Satellite"

Gain Variations Skewed Toward Increase or Decrease

Create a umargin block that models gain that can decrease by 10% but increase by 60% in the absence of phase variation, and a phase variation of $\pm 15^{\circ}$ in the absence of gain variation. To do so, use getDGM with the 'tight ' option. This option finds the smallest disk that captures the gain and phase ranges you provide.

DGM $=$ getDGM([0.9,1.6],[-15,15],'tight');
F = umargin('F', DGM)
F =
Uncertain gain/phase "F" with relative gain change in $[0.86,1.6]$ and phase change of ± 15 degre

In this case, the smallest disk encompasses the specified phase variation, and a gain variation that is slightly larger, but still skews toward increases in gain. Visualize the corresponding disk and the ranges of gain and phase variations modeled by F.
plot(F)

The left-hand plot shows that the modeled gain variation is not symmetric around the nominal value.
Generate another umargin block, this time using the 'balanced ' option in getDGM.
DGMb = getDGM([0.9,1.6],[-15,15],'balanced');
Fb = umargin('Fb',DGMb);
Compare the uncertainty disk modeled by each block.
figure;
diskmarginplot([F.GainChange;Fb.GainChange],'disk')

The disk of Fb models a larger, symmetric gain range (gmin = 1/gmax) and larger phase variations than the ones you specify. If you are confident that gain varies more in one direction than the other in your system, then this balanced model might be overly conservative.

Gain and Phase Variations in a MIMO Feedback Loop

The umargin block represents a SISO gain and phase uncertainty. To model gain and phase variations in a MIMO feedback loop, create a umargin block for each location in the loop at which you want to introduce gain and phase variation. For instance, consider the two-input, two-output feedback loop of the example "MIMO Stability Margins for Spinning Satellite".

Suppose that you want to study the system's behavior with gain and phase variations at the plant inputs and outputs. You can model those variations by creating separate umargin blocks for each channel, and building them into the closed-loop model.

Create the plant and controller models from "MIMO Stability Margins for Spinning Satellite". The plant is a two-input, two-output state-space model, and the feed-forward filter Kf is a two-input, twooutput static gain.

```
% Plant
a = 10;
A = [0 a;-a 0];
B = eye(2);
C = [1 a;-a 1];
D = 0;
P = ss(A,B,C,D);
% Prefilter
Kf = [1 -a;a 1]/(1+a^2);
```

Next, create the umargin blocks to represent the gain and phase uncertainty in each channel. Suppose that you want to model a gain uncertainty of about 5% in either direction at all four locations. Create a umargin block to model this uncertainty.

```
GM = 1.05;
u1 = umargin('u1',GM)
u1 =
    Uncertain gain/phase "u1" with relative gain change in [0.952,1.05] and phase change of }\pm2.7
```

umargin converts the specifed gain variation of $\pm 5 \%$ to a disk-based uncertainty model, which also allows phase changes of about $\pm 3^{\circ}$. Use plot to visualize the disk and the modeled range of gain and phase variation at each input and output.

```
plot(u1)
```


To get the best estimates of the impact of gain and phase uncertainty on system performance, you want the gain and phase to vary independently at each of the four locations. Therefore, create additional umargin blocks for each plant input and output, with the same gain specification.

```
u2 = umargin('u2',GM);
y1 = umargin('y1',GM);
y2 = umargin('y2',GM);
```

Build the closed-loop model, inserting $u 1$ and $u 2$ at the plant inputs, and y 1 and y 2 at the plant outputs. To do this, use blkdiag to combine $u 1$ and $u 2$ into a two-input, two-output system of the form [$\mathrm{u} 1,0 ; 0, \mathrm{u} 2$]. Create a similar combination of y 1 and y 2 . Then connect these with the plant, and use the feedback command to close the two-channel feedback loop.

```
Fu = blkdiag(u1,u2);
Fy = blkdiag(y1,y2);
L = Fy*P*Fu;
Tunc = feedback(L,eye(2))*Kf
Tunc =
Uncertain continuous-time state-space model with 2 outputs, 2 inputs, 2 states.
The model uncertainty consists of the following blocks:
    ul: Uncertain gain/phase, gain x [0.952,1.05], phase \pm 2.79 deg, 1 occurrences
    u2: Uncertain gain/phase, gain x [0.952,1.05], phase \pm 2.79 deg, 1 occurrences
    y1: Uncertain gain/phase, gain x [0.952,1.05], phase }\pm2.79 deg, 1 occurrence
    y2: Uncertain gain/phase, gain x [0.952,1.05], phase \pm 2.79 deg, 1 occurrences
Type "Tunc.NominalValue" to see the nominal value, "get(Tunc)" to see all properties, and "Tunc.l
```

Examine the effect of these variations on the system response.

```
rng(1) % for reproducibility
figure
step(Tunc,Tunc.NominalValue,10)
```


These small uncertainties have a considerable impact on system performance, sometimes even changing the sign of the response. Robustness analysis with robstab shows that only a slightly larger variation drives the closed-loop system unstable.

```
stabmarg = robstab(Tunc)
stabmarg = struct with fields:
    LowerBound: 1.0210
    UpperBound: 1.0231
    CriticalFrequency: 1.0000e-04
```


Check Robustness to Gain and Phase Variations

The requirement that a closed-loop system is robust against a particular amount of gain and phase uncertainty is equivalent to saying that the system has that amount of gain and phase margin. You can therefore use a umargin block to check the gain and phase margins of a system that also requires robustness against other types of uncertainty. To do so, capture your required disk margins
in a umargin block, and use robstab to check robust stability against all uncertainty modeled in the system.

Consider the following closed-loop system with parameter uncertainty.

```
k = ureal('k',10,'Percent',40);
G = tf(18,[1 k k]);
C = pid(1,2);
CL = feedback(G*C,1);
```

robstab shows that the system is robust against the modeled uncertainty. In fact, the system remains stable up two a little more than twice the modeled uncertainty.

```
stabmarg = robstab(CL)
stabmarg = struct with fields:
    LowerBound: 2.0458
    UpperBound: 2.0458
    CriticalFrequency: 4.4517
```

Suppose that you also require the system to tolerate gain increase or decrease of up to 50% and phase variation of up to $\pm 20^{\circ}$ at the plant input. To check whether the system has these margins, create a umargin block that models these variations and insert it into the closed-loop model.

```
DGM = getDGM(1.5,20,'tight');
F = umargin('F');
Gf = G*F;
CLf = feedback(Gf*C,1);
stabmarg = robstab(CLf)
stabmarg = struct with fields:
    LowerBound: 1.0939
    UpperBound: 1.0962
    CriticalFrequency: 3.9081
```

This result shows that in addition to robust stability against parameter variation, the feedback loop also maintains the desired gain and phase margins for all modeled values of k (actually for about 9% more than the modeled range of k).

You can also use the equivalence between disk margins and robust stability to gain and phase variations to design a robust controller that satisfies certain gain and phase margins. For examples, see "Design Robust Controller With Specified Gain and Phase Margins" on page 1-527 and "Robust Controller for Spinning Satellite".

Design Robust Controller With Specified Gain and Phase Margins

The robust controller returned by musyn optimizes robust performance of uncertain feedback systems. When the uncertain plant contains umargin blocks, this requirement of robust stability is equivalent to enforcing disk-based gain and phase margins equal to the umargin uncertainty. In this example, design a robust controller for an uncertain plant, enforcing closed-loop stability against gain and phase variations at the plant inputs and outputs.

Use the plant from the example "Loop Shaping with mixsyn" on the mixsyn reference page, introducing some uncertainty in the location of the system poles and zero.

```
a = ureal('a',1,'PlusMinus',[-0.1,0.1]);
s = zpk('s');
G = (s-a)/(s+a)^2;
```

The goal is to enforce closed-loop stability against gain and phase variation at the plant inputs and outputs, over the full range of parameter variation modeled in the plant G . To do so, use the target gain and phase margins to create umargin uncertain blocks and attach them to the plant. For this example, suppose that you want stability against gain variations of a factor of 1.5 in either direction, or phase variations of $\pm 20^{\circ}$.

```
DGM = getDGM(1.5,20,'tight');
Fin = umargin('Fin',DGM);
Fout = umargin('Fout',DGM);
Gmarg = Fout*G*Fin
Gmarg =
    Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 7 states.
    The model uncertainty consists of the following blocks:
        Fin: Uncertain gain/phase, gain x [0.667,1.5], phase \pm 22.6 deg, 1 occurrences
        Fout: Uncertain gain/phase, gain x [0.667,1.5], phase \pm 22.6 deg, 1 occurrences
        a: Uncertain real, nominal = 1, variability = [-0.1,0.1], 3 occurrences
Type "Gmarg.NominalValue" to see the nominal value, "get(Gmarg)" to see all properties, and "Gma
```

For tuning with musyn, you augment the plant with weighting functions that enforce your performance requirement such as reference tracking, disturbance rejection, and robustness. For this example, use the weighting functions described in the example on the on the mixsyn reference page.

```
W1 = makeweight(10,[1 0.1],0.01);
W2 = makeweight(0.1,[32 0.32],1);
W3 = makeweight(0.01,[1 0.1],10);
Gaug = augw(Gmarg,W1,W2,W3);
```

Use musyn to design a controller.

```
[K,gam] = musyn(Gaug,1,1);
D-K ITERATION SUMMARY:
```

	Robust performance			Fit order
Iter	K Step	Peak MU	D Fit	D
1	7.753	1.527	1.539	24
2	1.131	1.084	1.091	46
3	0.999	0.9958	1.004	32
4	0.996	0.9943	0.9962	36
5	0.9964	0.9948	0.9978	32

Best achieved robust performance: 0.994
musyn achieves a robust performance of about 1, which tells you that the closed-loop gain remains below 1 for the full range of uncertainty specified in the plant. To confirm that the resulting controller achieves the target gain and phase margins, use wcdiskmargin to examine the worst-case gain and
phase margins of the system against simultaneous variations at the plant inputs and outputs. Use the plant G that contains the parameter uncertainty but not the gain and phase uncertainty.

```
MMIO = wcdiskmargin(G,K)
MMIO = struct with fields:
    GainMargin: [0.6028 1.6588]
    PhaseMargin: [-27.8335 27.8335]
        DiskMargin: 0.4956
        LowerBound: 0.4956
        UpperBound: 0.4966
    CriticalFrequency: 1
    WorstPerturbation: [1x1 struct]
```

The worst-case disk-based gain margin of [0.6 1.66] is slightly larger than the target margin of [0.66 1.5], and the worst-case phase margin of $\pm 28^{\circ}$ is likewise better than the required margin of $\pm 20^{\circ}$. Thus, the controller K enforces the desired margins for the entire parameter-uncertainty range of the plant G.

For an example that uses umargin blocks with musyn to enforce gain and phase margins in a MIMO control loop, see "Robust Controller for Spinning Satellite".

Algorithms

umargin models gain and phase variations in an individual feedback channel as a frequencydependent multiplicative factor $F(s)$ multiplying the nominal open-loop response $L(s)$, such that the perturbed response is $L(s) F(s)$. The factor $F(s)$ is parameterized by:

$$
F(s)=\frac{1+\alpha[(1-E) / 2] \delta(s)}{1-\alpha[(1+E) / 2] \delta(s)} .
$$

In this model,

- $\delta(s)$ is a gain-bounded dynamic uncertainty, normalized so that it always varies within the unit disk $\left(\|\delta\|_{\infty}<1\right)$.
- α sets the amount of gain and phase variation modeled by F. For fixed E, the parameter α controls the size of the disk. For $\alpha=0$, the multiplicative factor is 1 , corresponding to the nominal L.
- E, called the eccentricity, skews the modeled uncertainty toward gain increase or gain decrease.

The factor F takes values in a disk centered on the real axis and containing the nominal value $F=1$. The disk is characterized by its intercept DGM = [gmin, gmax] with the real axis. gmin <1 and gmin >1 are the minimum and maximum relative changes in gain modeled by F, at nominal phase. The phase uncertainty modeled by F is the range DPM $=$ [pmin, pmax] of phase values at the nominal gain $(|F|=1)$. For instance, in the following plot, the right side shows the disk F that intersects the real axis in the interval [0.71,1.4]. The left side shows that this disk models a gain variation of $\pm 3 \mathrm{~dB}$ and a phase variation of $\pm 19^{\circ}$.

```
F = umargin('F',1.4125)
```

plot(F)

When you create a umargin block, you specify the amount of uncertainty by specifying DGM. Use getDGM to translate specific amounts of gain and phase variations in to a suitable DGM range that captures these variations. For more information about the uncertainty model used by umargin, see "Stability Analysis Using Disk Margins".

See Also

diskmargin|plot (umargin)

Topics

"Model Gain and Phase Uncertainty in Feedback Loops"
"Robust Controller for Spinning Satellite"
"Stability Analysis Using Disk Margins"
Introduced in R2020a

umat

Create uncertain matrix

Syntax

$M=\operatorname{umat}(\mathrm{A})$

Description

Uncertain matrices are rational expressions involving uncertain elements of type ureal, ucomplex, or ucomplexm. Use uncertain matrices for worst-case gain analysis and for building uncertain statespace (uss) models.

Create uncertain matrices by creating uncertain elements and combining them using arithmetic and matrix operations. For example:

```
p = ureal('p',1);
M = [0 p; 1 p^2]
```

creates a 2-by-2 uncertain matrix (a umat object) with the uncertain parameter p .
The syntax $\mathrm{M}=$ umat (A) converts the double array A to a umat object with no uncertainty.
Most standard matrix manipulations are valid on uncertain matrices, including addition, multiplication, inverse, horizontal and vertical concatenation. Specific rows/columns of an uncertain matrix can be referenced and assigned also.

If M is a umat, then M. NominalValue is the result obtained by replacing each uncertain element in M with its own nominal value.

If M is a umat, then M.Uncertainty is an object describing all the uncertain elements in M. All element can be referenced and their properties modified with this Uncertainty gateway. For instance, if B is an uncertain real parameter in M, then M. Uncertainty. B accesses the uncertain element B in M.

Examples

Create 3 uncertain elements and then a 3-by-2 umat.

```
a = ureal('a',5,'Range',[2 6]);
b = ucomplex('b',1+j,'Radius',0.5);
c = ureal('c',3,'Plusminus',0.4);
M = [a b;b*a 7;c-a b^2]
```

M is an uncertain matrix (umat object) with the uncertain parameters a, b, and c .
View the properties of M with get
get (M)
The nominal value of M is the result when all atoms are replaced by their nominal values.

```
M.NominalValue
ans =
\begin{tabular}{lr}
5.0000 & \(1.0000+1.0000 i\) \\
\(5.0000+5.0000 i\) & 7.0000 \\
-2.0000 & \(0+2.0000 i\)
\end{tabular}
```

Change the nominal value of a within M to 4 . The nominal value of M reflects this change.
M.Uncertainty.a.NominalValue $=4$;
M. NominalValue

```
ans =
    4.0000 1.0000 + 1.0000i
    4.0000 + 4.0000i 7.0000
    -1.0000 0 + 2.0000i
```

Get a random sample of M, obtained by taking random samples of the uncertain atoms within M.

```
usample(M)
```

ans =
$\begin{array}{ll}2.0072 & 0.8647+1.3854 i \\ 1.7358+2.7808 i & 7.0000\end{array}$
1.3829
-1.1715 + 2.3960i

Select the 1st and 3rd rows, and the 2 nd column of M. The result is a 2 -by- 1 umat, whose dependence is only on b .

M([1 3],2)

See Also

ucomplex | ucomplexm | ultidyn|umargin|ureal|usample

Introduced before R2006a

uplot

Plot multiple frequency response objects and doubles on same graph

Syntax

```
uplot(G1)
uplot(G1,G2)
uplot(G1,Xdata,Ydata)
uplot(G1,Xdata,Ydata,...)
uplot(G1,linetype)
uplot(G1,linetype,G2,...)
uplot(G1,linetype,Xdata,Ydata,linetype)
uplot(type,G1,linetype,Xdata,Ydata,linetype)
H = uplot(G1)
H = uplot(G1,G2)
H = uplot(G1,Xdata,Ydata)
H = uplot(G1,Xdata,Ydata,...)
H = uplot(G1,linetype)
H = uplot(G1,linetype,G2,...)
H = uplot(G1,linetype,Xdata,Ydata,linetype)
```


Description

uplot plots double and frd objects. The syntax is the same as the MATLAB plot command except that all data is contained in frd objects, and the axes are specified by type.

The (optional) type argument must be one of

Type	Description
'iv, d'	Data versus independent variable (default)
'iv,m'	Magnitude versus independent variable
'iv, lm'	log(magnitude) versus independent variable
'iv, p'	Phase versus independent variable
'liv, m'	Magnitude versus log(independent variable)
'liv, d'	Data versus log(independent variable)
'liv, m'	Magnitude versus log(independent variable)

Type	Description
'liv, lm'	log(magnitude) versus log(independent variable)
'liv, p'	Phase versus log(independent variable)
'r,i'	Real versus imaginary (parametrize by independent variable)
'nyq'	Real versus imaginary (parametrize by independent variable)
'nic'	Nicholas plot
'bode'	Bode magnitude and phase plot

The remaining arguments of uplot take the same form as the MATLAB plot command. Line types (for example, ' ${ }^{\prime}$ ', 'g-.', or ${ }^{\prime} * r^{\prime}$) can be optionally specified after any frequency response argument.

There is a subtle distinction between constants and frd objects with only one independent variable. A constant is treated as such across all frequencies, and consequently shows up as a line on any graph with the independent variable as an axis. A frd object with only one frequency point always shows up as a point. You might need to specify one of the more obvious point types in order to see it (e.g., ' + ', ' x^{\prime}, etc.).

Examples

Plot Multiple Frequency Responses

Create two SISO second-order systems, and calculate their frequency responses over different frequency ranges.

```
a1 = [-1,1;-1,-0.5];
b1 = [0;2]; c1 = [1,0]; d1 = 0;
sys1 = ss(al,b1,cl,d1);
a2 = [-.1,1;-1,-0.05];
b2 = [1;1]; c2 = [-0.5,0]; d2 = 0.1;
sys2 = ss(a2,b2,c2,d2);
omega = logspace(-2,2,100);
sys1g = frd(sys1,omega);
omega2 = [ [0.05:0.1:1.5] [1.6:.5:20] [0.9:0.01:1.1] ];
omega2 = sort(omega2);
sys2g = frd(sys2,omega2);
```

Create an frd object with a single frequency.

```
sys3 = rss(1,1,1);
rspot = frd(sys3,2);
```

The following plot uses the plot_type specification 'liv, lm'.

```
uplot('liv,lm',sys1g,'b-.',rspot,'r*-',sys2g);
xlabel('log independent variable')
ylabel('log magnitude')
title('axis specification: liv,lm')
```


See Also

bode |nichols|nyquist|plot| semilogx| semilogy| sigma
Introduced before R2006a

ureal

Create uncertain real parameter

Syntax

```
p = ureal('name',nominalvalue)
p = ureal('name',nominalvalue,'Propertyl',Value1,...
'Property2',Value2,...)
```


Description

An uncertain real parameter is used to represent a real number whose value is uncertain. Uncertain real parameters have a name (the Name property), and a nominal value (NominalValue property).

The uncertainty (potential deviation from NominalValue) is described (equivalently) in 3 different properties:

- PlusMinus: the additive deviation from NominalValue
- Range: the interval containing NominalValue
- Percentage: the percentage deviation from NominalValue

The Mode property specifies which one of these three descriptions remains unchanged if the NominalValue is changed (the other two descriptions are derived). The possible values for the Mode property are 'Range', 'Percentage' and 'PlusMinus'.

The default Mode is 'PlusMinus', and [-1 1 1] is the default value for the 'PlusMinus' property. The range of uncertainty need not be symmetric about NominalValue.

The property AutoSimplify controls how expressions involving the uncertain matrix are simplified. Its default value is 'basic', which means elementary methods of simplification are applied as operations are completed. Other values for AutoSimplify are 'off' ', no simplification performed, and 'full', which applies model-reduction-like techniques to the uncertain object.

Examples

Example 1

Create an uncertain real parameter and use get to display the properties and their values. Create uncertain real parameter object a with the internal name ' a ' and nominal value 5.

```
a = ureal('a',5)
get(a)
            Name: 'a'
    NominalValue: 5
            Mode: 'PlusMinus'
            Range: [4 6]
        PlusMinus: [-1 1]
        Percentage: [-20 20]
    AutoSimplify: 'basic'
```

Uncertain Real Parameter: Name a, NominalValue 5, variability = [-1 1]

Note that the Mode is 'PlusMinus', and that the value of PlusMinus is indeed [-1 1]. As expected, the range description of uncertainty is [46], while the percentage description of uncertainty is [-20 20].

Set the range to [3 9]. This leaves Mode and NominalValue unchanged, but all three descriptions of uncertainty have been modified.

```
a.Range = [3 9];
get(a)
    Name: 'a'
    NominalValue: 5
            Mode: 'PlusMinus'
            Range: [3 9]
        PlusMinus: [-2 4]
        Percentage: [-40 80]
    AutoSimplify: 'basic'
```


Example 2

Property/Value pairs can also be specified at creation.

```
b = ureal('b',6,'Percentage',[-30 40],'AutoSimplify','full');
get(b)
    Name: 'b'
    NominalValue: 6
            Mode: 'Percentage'
            Range: [4.2000 8.4000]
        PlusMinus: [-1.8000 2.4000]
    Percentage: [-30.0000 40.0000]
    AutoSimplify: 'full'
```

Note that Mode is automatically set to 'Percentage '.

Example 3

Specify the uncertainty in terms of percentage, but force Mode to 'Range'.

```
c = ureal('c',4,'Mode','Range','Percentage',25);
get(c)
            Name: 'c'
    NominalValue: 4
            Mode: 'Range'
            Range: [3 5]
        PlusMinus: [-1 1]
        Percentage: [-25 25]
        AutoSimplify: 'basic'
```


Compatibility Considerations

Sampling of ureal elements is uniform in actual values

Behavior changed in R2020a
Beginning in R2020a, usample uniformly samples the actual uncertainty range of ureal objects. Previously, usample first normalized the uncertain element, and then sampled uniformly in the normalized range. As a result of this change, you might obtain different results when you use usample to sample ureal elements or uss models that contain them, even if you use the same random seed.

The new implementation yields more uniform sampling for ureal parameters with skewed ranges (nominal value closer to one end of the range than the other). However, highly skewed ranges can lead to poor numeric conditioning and poor results. Therefore, for meaningful results, avoid highly skewed ranges where the nominal value is orders of magnitude closer to one end of the range than to the other.

See Also

getLimits | ucomplex | umargin |umat |uss
Introduced before R2006a

uss/usample

Generate random samples of uncertain or generalized model

Syntax

```
B = usample(A);
B = usample(A,N)
[B,SampleValues] = usample(A,N)
[B,SampleValues] = usample(A,Names,N)
[B,SampleValues] = usample(A,Names1,N1,Names2,N2,\ldots.)
[B,SampleValues] = usample(A,N,Wmax)
[B,SampleValues] = usample(A,Names,N,Wmax)
```


Description

$B=$ usample(A) substitutes a random sample of the uncertain objects in A, returning a certain (i.e., not uncertain) array of size [size(A)]. The input A can be any uncertain element, matrix, or system, such as ureal, umat, uss, or ufrd. A can also be any generalized matrix or system, such as genss or genmat, that contains uncertain blocks and other types of Control Design Blocks (Control System Toolbox). If A contains non-uncertain control design blocks, these are unchanged in B. Thus, for example, usample applied to a genss with both tunable and uncertain blocks, the result is a genss array with only tunable blocks.
$B=$ usample (A, N) substitutes N random samples of the uncertain objects in A, returning a certain (i.e., not uncertain) array of size [size(A) N].
[B , SampleValues] = usample(A, N) additionally returns the specific sampled values (as a Struct whose field names are the names of A's uncertain elements) of the uncertain elements. Hence, B is the same as usubs (A, SampleValues).
[B,SampleValues] = usample(A,Names,N) samples only the uncertain elements listed in the Names variable (cell, or char array). If Names does not include all the uncertain objects in A, then B will be an uncertain object. Any entries of Names that are not elements of A are simply ignored. Note that usample (A, fieldnames (A.Uncertainty) , N) is the same as usample (A, N).
[B,SampleValues] = usample(A,Names1,N1,Names2,N2, ...) takes N1 samples of the uncertain elements listed in Names1, and N2 samples of the uncertain elements listed in Names2, and so on. size(B) will equal [size(A) N1 N2 ...].

The scalar parameter Wmax in

```
[B,SampleValues] = usample(A,N,Wmax)
[B,SampleValues] = usample(A,Names,N,Wmax)
[B,SampleValues] = usample(A,Names,N,Wmax)
```

affects how ultidyn and umargin elements within A are sampled, restricting the poles of the samples. If A is a continuous-time uss or ufrd, then the poles of sampled GainBounded ultidyn or
umargin elements in SampleValues will each have magnitude <= BW. If A is a discrete-time, then sampled GainBounded ultidyn or umargin elements are obtained by Tustin transformation, using $\mathrm{BW} /\left(2^{*} \mathrm{TS}\right)$ as the (continuous) pole magnitude bound. In this case, BW should be <1. If the ultidyn type is PositiveReal, then the samples are obtained by bilinearly transforming (see "Normalizing Functions for Uncertain Elements") the GainBounded elements described above.

Examples

Sample Real Parameter

Create a real uncertain parameter, sample it, and plot a histogram of the sampled values.
A = ureal('A',5);
Asample = usample(A,500);
Examine the size of the parameter and the sample array.
size(A)
Uncertain real scalar.
size(Asample)
ans $=1 \times 3$
$\begin{array}{lll}1 & 1 & 500\end{array}$

A is a scalar parameter. The dimensions of Asample reflect that A is a 1-by-1 parameter. Examine the data type of Asample.

```
class(Asample)
ans =
'double'
```

The samples of the scalar parameter are numerical values.
Plot the histogram of sampled values.
hist(Asample(:))

Sample Responses of Uncertain Control System Model

This example illustrates how to sample the open and closed-loop response of an uncertain plant model for Monte Carlo analysis.

Create two uncertain real parameters and an uncertain plant.

```
gamma = ureal('gamma',4);
tau = ureal('tau',.5,'Percentage',30);
P = tf(gamma,[tau 1]);
```

Create an integral controller based on the nominal values of plant uncertainties.
KI $=1 /(2 *$ tau.Nominal*gamma.Nominal);
C = tf(KI,[10]);
Now create an uncertain closed-loop system.
CLP = feedback($\left.\mathrm{P}^{*} \mathrm{C}, 1\right)$;
Sample the plant at 20 values, distributed uniformly about the tau and gamma parameter cube.
[Psample1D,Values1D] = usample(P,20);
size(Psample1D)

```
20x1 array of state-space models.
Each model has 1 outputs, 1 inputs, and 1 states.
```

This sampling returns an array of 20 state-space models, each representing the closed-loop system within the uncertainty.

Now sample the plant at 10 values of tau and 15 values of gamma.
[Psample2D,Values2D] = usample(P,'tau',10,'gamma',15); size(Psample2D)
10×15 array of state-space models.
Each model has 1 outputs, 1 inputs, and 1 states.
Plot the step responses of the 1-D sampled plant.

```
subplot(2,1,1);
step(Psample1D)
```


Evaluate the uncertain closed-loop model at the same values using usubs, and plot the step response.
subplot(2,1,2);
step(usubs(CLP,Values1D))

Restrict Pole Locations in Sampled Uncertain Dynamics

To see the effect of limiting the bandwidth of sampled models with Wmax, create two ultidyn objects.

$B=$ ultidyn('B',[11]);
Sample 10 instances of each, using a bandwidth limit of $1 \mathrm{rad} / \mathrm{sec}$ on A , and $20 \mathrm{rad} / \mathrm{sec}$ on B .
Npts = 10;
As = usample(A,Npts,1);
Bs = usample(B,Npts,20);
Plot 10-second step responses, for the two sample sets.
step(As,'r',Bs,'b--',10)

The lower bandwidth limit on the samples of A results in generally slower step responses for those samples.

Compatibility Considerations

Sampling of ureal elements is uniform in actual values

Behavior changed in R2020a
Beginning in R2020a, usample uniformly samples the actual uncertainty range of ureal objects. Previously, usample first normalized the uncertain element, and then sampled uniformly in the normalized range. As a result of this change, you might obtain different results when you use usample to sample ureal elements or uss models that contain them, even if you use the same random seed.

The new implementation yields more uniform sampling for ureal parameters with skewed ranges (nominal value closer to one end of the range than the other). However, highly skewed ranges can lead to poor numeric conditioning and poor results. Therefore, for meaningful results, avoid highly skewed ranges where the nominal value is orders of magnitude closer to one end of the range than to the other.

See Also

rsampleBlock |ucomplex |ufind |ufrd|ultidyn |umargin | umat | ureal |usample |uss | usubs

Introduced in R2009b

usample

Generate random samples of uncertain variables in a Simulink model

Syntax

```
samples = usample(uvars,N)
samples = usample(uvars)
samples = usample(uvars,N,Wmax)
```


Description

This function is for generating random samples of uncertain variables stored in a data structure you obtain from a Simulink model, using ufind. To generate random samples from uncertain models (uss, ufrd) or generalized state-space models (genss, genfrd), use usample (uss).
samples = usample(uvars, N) generates N random samples of the uncertain variables in uvars. uvars is a structure that lists uncertain variables (ureal, ucomplex, umargin, or ultidyn) by name. You can automatically obtain uvars for a Simulink model that contains Uncertain State Space blocks using ufind. samples is an N-by- 1 structure array whose field names and values are the names and sample values of the uncertain variables. Use this syntax, together with ufind, to generate random samples for uncertain variables in Simulink models.
samples = usample(uvars) is equivalent to usample(uvars, 1).
samples = usample(uvars,N,Wmax) specifies constraints, as described in uss/usample, for sampling uncertain variables of type ultidyn in uvars.

Examples

Generate Random Samples of Uncertain Variables

Create a structure that contains uncertain variables a and b .

```
uvars = struct('a',ureal('a',5),'b',ultidyn('b',[2 3],'Bound',7))
uvars = struct with fields:
    a: [1x1 ureal]
    b: [2x3 ultidyn]
```

Generate a random sample of a and b.

```
samples = usample(uvars)
samples = struct with fields:
    a: 5.6294
    b: [2x3 ss]
```

samples is also a structure, where each field contains a randomly sampled instance of the uncertain variable type in uvars. You can use samples to simulate an uncertain Simulink model at these values as shown in "Sample Uncertain Variables in a Simulink® Model" on page 1-547.

Sample Uncertain Variables in a Simulink® Model

Generate random samples of uncertain variables in a Simulink \circledR^{\circledR} model.
Open the model.

```
open_system('usim_model')
```


This model uses Uncertain State Space (USS) blocks to capture three sources of uncertainty: unmodeled plant dynamics (input_unc), variability in the plant pole location (unc_pole), and poorly known value of the sensor gain (sensor_gain).

To see how this uncertainty affects the closed-loop response, double-click to randomly sample the uncertainty and re-simulate the model. See the companion demo for more information on Double click here to see companion demo. robustness analysis in Simulink.

The model contains three Uncertain State Space blocks named Unmodeled Plant Dynamics, Plant, and Sensor Gain. These blocks depend on three uncertain variables named input_unc, unc_pole, and sensor_gain.

Use ufind to find all Uncertain State Space blocks and uncertain variables in the model.

```
uvars = ufind('usim_model');
```


Use usample to generate random samples of input_unc, unc_pole, and sensor_gain. Simulate the closed-loop response for each of these random samples.

```
for i=1:10;
    uval = usample(uvars);
        sim('usim model',10);
end
```


The MultiPlot Graph block displays the simulated responses.

Tutorials

"Simulate Uncertain Model at Sampled Parameter Values"
"Vary Uncertain Values Across Multiple Uncertain Blocks"
Robustness Analysis in Simulink

How To

"Simulate Uncertainty Effects"

See Also

ufind |usample (uss)|uss|usubs

Introduced before R2006a

uscale

Scale uncertainty of block or system

Syntax

blk_scaled = uscale(blk,factor)
M_scaled = uscale(M,factor)

Description

blk_scaled = uscale(blk, factor) scales the amount of uncertainty in an uncertain control design block by factor. Typically, factor is a robustness margin returned by robstab or robgain, or a robust performance returned by musynperf. The uncertain element blk_scaled is of the same type as $b l k$, with the amount of uncertainty scaled in normalized units. For instance, if factor is 0.75 , the normalized uncertainty of blk_scaled is 75% of the normalized uncertainty of $b l k$.

M_scaled = uscale(M,factor) scales all the uncertain blocks in the model M. Non-uncertain elements are not changed.

Examples

Find Tolerable Range of Gain and Phase Variations

Consider a feedback loop with the following open-loop gain.
$L=t f\left(3.5,\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\right)$;
Suppose that the system has gain uncertainty of 1.5 (gain can increase or decrease by a factor of 1.5) and phase uncertainty of $\pm 30^{\circ}$.

```
DGM = getDGM(1.5,30,'tight');
F = umargin('F',DGM)
F =
    Uncertain gain/phase "F" with relative gain change in [0.472,1.5] and phase change of }\pm30\mathrm{ degr
```

Examine the robust stability of the closed-loop system.

```
T = feedback(L*F,1);
SM = robstab(T)
SM = struct with fields:
    LowerBound: 0.8303
    UpperBound: 0.8319
    CriticalFrequency: 1.4482
```

robstab shows that the system can only tolerate 0.83 times the modeled uncertainty before going unstable. Scale the umargin block F by this amount to find the largest gain and phase variation that the system can tolerate.

```
factor = SM.LowerBound;
Fsafe = uscale(F,factor)
Fsafe =
    Uncertain gain/phase "F" with relative gain change in [0.563,1.42] and phase change of \pm24.8 d
```

The scaled uncertainty has smaller ranges of both gain variation and phase variation. Compare these ranges for the original modeled variation and the maximum tolerable variation.

```
DGM = F.GainChange;
DGMsafe = Fsafe.GainChange;
diskmarginplot([DGM;DGMsafe])
legend('original','safe')
```

Range of gain and phase variations

Scale All Uncertain Elements in a Model

Consider the uncertain control system of the example "Robust Performance of Closed-Loop System" on the robgain reference page. That example examines the sensitivity of the closed-loop response at the plant output to disturbances at the plant input.

```
k = ureal('k',10,'Percent',40);
delta = ultidyn('delta',[1 1]);
G = tf(18,[1 1.8 k]) * (1 + 0.5*delta);
```

```
C = pid(2.3,3,0.38,0.001);
S = feedback(1,G*C)
S =
    Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 4 states.
    The model uncertainty consists of the following blocks:
        delta: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
        k: Uncertain real, nominal = 10, variability = [-40,40]%, 1 occurrences
Type "S.NominalValue" to see the nominal value, "get(S)" to see all properties, and "S.Uncertain
```

Suppose that you do not want the peak gain of this sensitivity function to exceed 1.5. Use robgain to find out how much of the modeled uncertainty the system can tolerate while the peak gain remains below 1.5.

```
perfmarg = robgain(S,1.5)
perfmarg = struct with fields:
    LowerBound: 0.7821
    UpperBound: 0.7837
    CriticalFrequency: 7.8566
```

With that performance requirement, the system can only tolerate about 78% of the modeled uncertainty. Scale all the uncertain elements in S to create a model of the closed-loop system with the maximum level of uncertainty that meets the performance requirement.

```
factor = perfmarg.LowerBound;
S_scaled = uscale(S,factor)
S_scaled =
    Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 4 states.
    The model uncertainty consists of the following blocks:
        delta: Uncertain lx1 LTI, peak gain = 0.782, 1 occurrences
        k: Uncertain real, nominal = 10, variability = [-31.3,31.3]%, 1 occurrences
Type "S_scaled.NominalValue" to see the nominal value, "get(S_scaled)" to see all properties, an
```

The display shows how the uncertain elements in S scaled have changed: the peak gain of the ultidyn element delta is reduced from 1 to 0.78 , and the range of variation of the uncertain real parameter k is reduced from $\pm 40 \%$ to $\pm 31.3 \%$.

Input Arguments

blk - Uncertain control design block
ureal | umargin | ultidyn | ...
Uncertain control design block to scale, specified as a ureal, umargin, ultidyn, or other uncertain block.

factor - Scaling factor

scalar
Scaling factor, specified as a scalar. This argument is the amount by which uscale scales the normalized uncertainty of blk or M . For instance, if factor $=0.8$, then the function reduces the
uncertainty to 80% of its original value, in normalized units. Similarly, if factor $=2$, then the function doubles the uncertainty.

Typically, factor is a robustness margin returned by robstab or robgain, or a robust performance returned by musynperf. Thus, you can use uscale to find the largest range of modeled uncertainty in a system for which the system has good robust stability or performance.

M - Uncertain model

uss | umat | ufrd | genss | ...
Uncertain model, specified as a uss, umat, ufrd, or genss with uncertain control design blocks. The uscale command scales uncertain control design blocks in M. Other blocks of M are unchanged.

Output Arguments

blk_scaled - Scaled uncertain block

ureal|umargin |ultidyn | ...
Scaled uncertain block, returned as a block of the same type as blk, such as a ureal, umargin, ultidyn, or other uncertain block. The uncertainty of blk_scaled is the same as the uncertainty in M , scaled by factor.

M_scaled - Scaled uncertain model

uss | umat | ufrd | genss | ...
Scaled uncertain model, returned as a model of the same type as M, such as a uss, umat, ufrd, or genss with uncertain control design blocks. The uncertain control design blocks in M_scaled are the same as the blocks in M , with the size of uncertainty scaled by factor in normalized units.

See Also

actual2normalized|musynperf|normalized2actual|robgain| robstab
Introduced in R2020a

usimfill

(Not recommended) Helper function for USS System blocks to set "User-defined Uncertainty" field or state of "Uncertainty value" menu

Compatibility

Note usimfill is not recommended. Use ufind instead.

Syntax

```
usimfill(ModelName,val)
usimfill(ModelName,'Uncertainty value','Nominal')
usimfill(ModelName,'Uncertainty value','User defined')
```


Description

The command usimfill allows simple control of some parameters of all USS System blocks in a Simulink model.
usimfill(ModelName, val) pushes the character vector val into the Uncertainty value name field of all USS System blocks in the Simulink model specified by ModelName.
usimfill(ModelName,'Uncertainty value','Nominal') sets the Uncertainty value pulldown menu to Nominal for all USS System blocks in the Simulink model specified by ModelName. Only a limited number of characters are needed to make this specification, so usimfill(ModelName, 'U', 'N') accomplishes the same effect.
usimfill(ModelName,'Uncertainty value','User defined') sets the Uncertainty value pulldown menu to User defined for all USS System blocks in the Simulink model specified by ModelName. Only a limited number of characters are needed to make this specification, so usimfill(ModelName,'U','U') accomplishes the same effect.

Examples

Open the model file associated with the example.

```
open_system('usim_model');
unc_pole = ureal('unc_pole',-5,'Range',[-10 -4]);
plant = ss(unc_pole,5,1,1);
input_unc = ultidyn('input_unc',[1 1]);
wt = makeweight(0.25,130,2.5);
sensor_gain = ureal('sensor_gain',1,'Range',[0.1 2]);
```

This has three USS System blocks. They are plant with a ureal atom named unc_pole; input_unc which is a ultidyn object, and sensor_gain which is a ureal atom.

Run usimfill on the model, filling in the field with the label 'newData'.
usimfill('usim_model','newData');
View all of the dialog boxes, and see that 'newData' has been entered.
Run usimfill on the model, changing the Uncertainty Selection to Nominal.

```
usimfill('usim_model','Uncertainty value','Nominal');
```

Similarly run usimfill on the model, changing the Uncertainty Selection to User Specified Uncertainty.
usimfill('usim_model','Uncertainty value','User defined');
Now generate a random sample of the uncertain atoms, and run the simulation
newData $=$ usimsamp('usim_model',120); sim('usim_model');

See Also

usample |usiminfo |usimsamp |usubs
Introduced in R2007a

usiminfo

(Not recommended) Find USS System blocks within specified Simulink model and check for consistency

Compatibility

Note usiminfo is not recommended. Use ufind instead.

Syntax

[cflags,allupaths, allunames, upaths, unames, csumchar]
= usiminfo(sname, silent)

Description

The command usiminfo returns information regarding the locations of all USS System blocks within a Simulink model and determines if these compatibility conditions are satisfied. It is possible to have uncertain objects of the same name throughout a Simulink model. The helper functions usimsamp and usimfill assume that these are the same uncertainty. Hence uncertain objects of the same name should have the same object properties and Uncertainty value in the USS System pulldown menu. usiminfo provides information about the uncertainty in the Simulink diagram sname.

The following describes the input and outputs arguments of usiminfo:

Input Arguments	Description
sname	Simulink diagram name
silent	Display inconsistencies between uncertain atoms, when not empty. Default is empty.

Output Arguments	Description
cflag	Compatibility flag set to 1 if all uncertainties are consistent, set to 0 if an uncertainty definition(s) is consistent and set to -1 if common uncertainties in different blocks have different Uncertainty value.
allupaths	Path names of USS System blocks in the model (cell).
allunames	Uncertainties names in Simulink model (cell).
upaths	Path names associated with each allunames entry (cell).
unames	Uncertainty names associated with each allupaths entry (cell).
csumchar	Character array with description of uncertainties and their associated block path names. Empty if there is a conflict with unames.

See Also

usample |usimfill|usimsamp|usubs

Introduced in R2007a

usimsamp

(Not recommended) Generate random instance of all uncertain atoms present in all USS System blocks of Simulink model

Compatibility

Note usimsamp is not recommended. Use usample instead.

Syntax

sample $=$ usimsamp(ModelName)
sample = usimsamp(ModelName,BW)

Description

The command usimsamp samples a Simulink model. Note that if the model contains any USS System blocks, then the model can be interpreted as an uncertain Simulink model. The sample generated by usimsamp is a scalar structure, with fieldnames corresponding to the uncertain atoms within all of the USS System blocks, and the values are specific random samples of the atoms.

For ultidyn atoms, the magnitude of the sampled poles can be limited using an optional second bandwidth argument, BW. See usample for more information on this parameter.

Examples

Open the model file associated with the example.

```
open_system('usim_model');
```

This has 3 USS System blocks. They are plant with a ureal atom named unc_pole; input_unc which is a ultidyn object, and sensor_gain which is a ureal atom.

Run usimsamp on the model, yielding a structure as described above.

```
unc_pole = ureal('unc_pole',-5,'Range',[-10 -4]);
plant = ss(unc_pole,5,1,1);
input_unc = ultidyn('input_unc',[1 1]);
wt = makeweight(0.25,130,2.5);
sensor_gain = ureal('sensor_gain',1,'Range',[0.1 2]);
data = usimsamp('usim_model')
data =
    input_unc: [1x1 ss]
    sensor_gain: 0.9935
        unc_pole: -4.1308
```


See Also

usample|usimfill|usiminfo|usubs

Introduced in R2007a

uss

Uncertain state-space model

Description

Use uss model objects to represent uncertain dynamic systems.
The two dominant forms of model uncertainty are:

- Uncertainty in parameters of the underlying differential equation models (uncertain state-space matrices)
- Frequency-domain uncertainty, which often quantifies model uncertainty by describing absolute or relative uncertainty in the frequency response (uncertain or unmodeled linear dynamics)
uss model objects can represent dynamic systems with either or both forms of uncertainty. You can use uss to perform robust stability and performance analysis and to test the robustness of controller designs.

Creation

There are several ways to create a uss model object, including:

- Use tf with one or more uncertain real parameters (ureal). For example:

```
p = ureal('p',1);
usys = tf(p,[1 p]);
```

For another example, see "Transfer Function with Uncertain Coefficients" on page 1-569.

- Use ss with uncertain state-space matrices (umat). For example:

```
p = ureal('p',1);
A = [0 3*p; -p p^2];
B = [0; p];
C = ones(2);
D = zeros(2,1);
usys = ss(A,B,C,D);
```

For another example, see "Uncertain State-Space Model" on page 1-570.

- Combine numeric LTI models with uncertain elements using model interconnection commands such as connect, series, or parallel, or model arithmetic operators such as *, + , or - . For example:

```
sys = tf(1,[1 1]);
p = ureal('p',1);
D = ultidyn('Delta',[1 1]);
usys = p*sys*(1 + 0.1*D);
```

For another example, see "System with Uncertain Dynamics" on page 1-571.

- Convert a double array or a numeric LTI model to uss form using usys = uss(sys). In this case, the resulting uss model object has no uncertain elements. For example:

```
M = tf(1,[1 1 1]);
```

usys = uss(M);

- Use ucover to create a uss model whose range of possible frequency responses includes all responses in an array of numeric LTI models. The resulting model expresses the range of behaviors as dynamic uncertainty (ultidyn).

Properties

NominalValue - Nominal value of uncertain model
 ss model object

Nominal value of the uncertain model, specified as a state-space (ss) model object. The state-space model is obtained by setting all the uncertain control design blocks of the uncertain model to their nominal values.

Uncertainty - Uncertain elements
 structure

Uncertain elements of the model, specified as a structure whose fields are the names of the uncertain blocks, and whose values are the control design blocks themselves. Thus, the values stored in the structure can be ureal, umat, ultidyn, or other uncertain control design blocks. For instance, the following commands create an uncertain model usys with two uncertain parameters, p1 and p2.

```
p1 = ureal('p1',1);
p2 = ureal('p2',3);
A = [0 3*p1; -p1 p1^2];
B = [0; p2];
C = ones(2);
D = zeros(2,1);
usys = ss(A,B,C,D);
```

The Uncertainty property of usys is a structure with two fields, p 1 and p 2 , whose values are the corresponding ureal uncertain parameters.

```
usys.Uncertainty
ans =
    struct with fields:
    p1: [1\times1 ureal]
    p2: [1\times1 ureal]
```

You can access or examine each uncertain parameter individually. For example:

```
get(usys.Uncertainty.p1)
    NominalValue: 1
            Mode: 'PlusMinus'
            Range: [0 2]
        PlusMinus: [-1 1]
        Percentage: [-100 100]
    AutoSimplify: 'basic'
            Name: 'p1'
```


A, B, C, D, E - State-space matrices

numeric matrix | uncertain matrix
This property is read-only.
State-space matrices, specified as numeric matrices or uncertain matrices (umat). The state-space matrices are evaluated by fixing all dynamic uncertainty blocks (udyn, ultidyn) to their nominal values.

- A - State matrix A, specified as a square matrix or umat with as many rows and columns as there are system states.
- B - Input-to-state matrix B, specified as a matrix or umat with as many rows as there are system states and as many columns as there are system inputs.
- C - State-to-output matrix C, specified as a matrix or umat with as many rows as there are system outputs and as many columns as there are system states.
- D - Feedthrough matrix D, specified as a matrix or umat with as many rows as there are system outputs and as many columns as there are system inputs.
- E $-E$ matrix for implicit (descriptor) state-space models, specified as a matrix or umat of the same dimensions as A . By default $\mathrm{E}=$ [], meaning that the state equation is explicit. To specify an implicit state equation $E d x / d t=A x+B u$, set this property to a square matrix of the same size as A. See dss for more information about descriptor state-space models.

StateName - State names

\{ ' ' \} (default) | character vector | cell array of character vectors
State names, specified as one of these values:

- Character vector - For first-order models
- Cell array of character vectors - For models with two or more states
- ' ' - For unnamed states

You can specify StateName using a string, such as "velocity", but the state name is stored as a character vector, 'velocity'.
Example: 'velocity'
Example: \{'x1', 'x2'\}

StateUnit - State units

\{' ' \} (default) | character vector | cell array of character vectors
State units, specified as one of these values:

- Character vector - For first-order models
- Cell array of character vectors - For models with two or more states
- ' ' - For states without specified units

Use StateUnit to keep track of the units each state is expressed in. StateUnit has no effect on system behavior.

You can specify StateUnit using a string, such as "mph", but the state units are stored as a character vector, 'mph'.
Example: 'mph'

Example: \{'rpm','rad/s'\}

InternalDelay - Internal delays

scalar | vector
Internal delays, specified as a scalar or vector. For continuous-time models, internal delays are expressed in the time unit specified by the TimeUnit property of the model object. For discrete-time models, internal delays are expressed as integer multiples of the sample time Ts. For example, InternalDelay = 3 means a delay of three sampling periods.

You can modify the values of internal delays. However, the number of entries in InternalDelay cannot change, because it is a structural property of the model.

Internal delays arise, for example, when closing feedback loops on systems with delays, or when connecting delayed systems in series or parallel. For more information about internal delays, see "Closing Feedback Loops with Time Delays" (Control System Toolbox).

InputDelay - Delay at inputs

0 (default) | scalar | vector
Delay at each input, specified as a scalar or a vector. For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a numerical value that represents the input delay for the corresponding input channel. For continuous-time models, specify input delays in the time unit stored in the TimeUnit property of the model object. For discrete-time models, specify input delays in integer multiples of the sample time Ts. For example, InputDelay $=3$ means a delay of three sample times.

Set InputDelay to a scalar value to apply the same delay to all channels.

OutputDelay - Delay at outputs

0 (default) | scalar | vector
Delay at each output, specified as a scalar or a vector. For a system with Ny outputs, set OutputDelay to an Ny-by-1 vector. Each entry of this vector is a numerical value that represents the output delay for the corresponding output channel. For continuous-time models, specify output delays in the time unit stored in the TimeUnit property of the model object. For discrete-time models, specify output delays in integer multiples of the sample time Ts. For example, OutputDelay $=3$ means a delay of three sample times.

Set OutputDelay to a scalar value to apply the same delay to all channels.

Ts - Sample time

0 (default) | - 1 | positive scalar
Sample time, specified as:

- 0 - For continuous-time models.
- Positive scalar value - For discrete-time models. Specify the sample time in the units given in the TimeUnit property of the model.
- -1 - For discrete-time models with unspecified sample time.

Changing this property does not discretize or resample the model. Use c2d and d2c to convert between continuous-time and discrete-time representations. Use d2d to change the sample time of a discrete-time system.

TimeUnit - Model time units

'seconds' (default)|'minutes ' | 'milliseconds ' | ...

Model time units, specified as one of these values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

You can specify TimeUnit using a string, such as "hours", but the time units are stored as a character vector, 'hours'.

Model properties such as sample time Ts, InputDelay, OutputDelay, and other time delays are expressed in the units specified by TimeUnit. Changing this property has no effect on other properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

InputName - Names of input channels

\{' ' $\}$ (default) | character vector | cell array of character vectors
Names of input channels, specified as one of these values:

- Character vector - For single-input models
- Cell array of character vectors - For models with two or more inputs
- ' ' - For inputs without specified names

You can use automatic vector expansion to assign input names for multi-input models. For example, if sys is a two-input model, enter:
sys.InputName = 'controls';
The input names automatically expand to \{'controls(1)'; 'controls(2)' \}.
You can use the shorthand notation u to refer to the InputName property. For example, sys. u is equivalent to sys.InputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

You can specify InputName using a string, such as "voltage", but the input name is stored as a character vector, 'voltage'.

InputUnit - Units of input signals

\{ ' ' $\}$ (default) | character vector | cell array of character vectors
Units of input signals, specified as one of these values:

- Character vector - For single-input models
- Cell array of character vectors - For models with two or more inputs
- ' ' - For inputs without specified units

Use InputUnit to keep track of the units each input signal is expressed in. InputUnit has no effect on system behavior.

You can specify InputUnit using a string, such as "voltage", but the input units are stored as a character vector, 'voltage'.
Example: 'voltage'
Example: \{'voltage', 'rpm'\}

InputGroup - Input channel groups

structure with no fields (default) | structure
Input channel groups, specified as a structure where the fields are the group names and the values are the indices of the input channels belonging to the corresponding group. When you use InputGroup to assign the input channels of MIMO systems to groups, you can refer to each group by name when you need to access it. For example, suppose you have a five-input model sys, where the first three inputs are control inputs and the remaining two inputs represent noise. Assign the control and noise inputs of sys to separate groups.

```
sys.InputGroup.controls = [1:3];
sys.InputGroup.noise = [4 5];
```

Use the group name to extract the subsystem from the control inputs to all outputs.
sys(:,'controls')
Example: struct('controls',[1:3],'noise',[4 5])

OutputName - Names of output channels

\{ ' ' $\}$ (default) | character vector | cell array of character vectors
Names of output channels, specified as one of these values:

- Character vector - For single-output models
- Cell array of character vectors - For models with two or more outputs
- ' ' - For outputs without specified names

You can use automatic vector expansion to assign output names for multi-output models. For example, if sys is a two-output model, enter:

```
sys.OutputName = 'measurements';
```

The output names automatically expand to \{'measurements(1)';'measurements(2)'\}.
You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

You can specify OutputName using a string, such as "rpm", but the output name is stored as a character vector, 'rpm'.

OutputUnit - Units of output signals

\{ ' ' \} (default) | character vector | cell array of character vectors
Units of output signals, specified as one of these values:

- Character vector - For single-output models
- Cell array of character vectors - For models with two or more outputs
- ' ' - For outputs without specified units

Use OutputUnit to keep track of the units each output signal is expressed in. OutputUnit has no effect on system behavior.

You can specify OutputUnit using a string, such as "voltage", but the output units are stored as a character vector, 'voltage'.

Example: 'voltage'
Example: \{'voltage', 'rpm'\}

OutputGroup - Output channel groups

structure with no fields (default) | structure
Output channel groups, specified as a structure where the fields are the group names and the values are the indices of the output channels belonging to the corresponding group. When you use OutputGroup to assign the output channels of MIMO systems to groups, you can refer to each group by name when you need to access it. For example, suppose you have a four-output model sys, where the second output is a temperature, and the rest are state measurements. Assign these outputs to separate groups.
sys.OutputGroup.temperature = [2];
sys.InputGroup.measurements = [1 3 4];
Use the group name to extract the subsystem from all inputs to the measurement outputs.
sys('measurements',:)
Example: struct('temperature',[2],'measurement',[$1 \begin{array}{lll}1 & 3 & 4])\end{array}$

Notes - Text notes about model

[0×1 string] (default) | string | cell array of character vector
Text notes about the model, stored as a string or a cell array of character vectors. The property stores whichever of these two data types you provide. For instance, suppose that sys 1 and sys 2 are dynamic system models, and set their Notes properties to a string and a character vector, respectively.

```
sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes
ans =
    "sys1 has a string."
ans =
    'sys2 has a character vector.'
```

UserData - Data associated with model
[] (default) | any data type

Data of any kind that you want to associate and store with the model, specified as any MATLAB data type.

Name - Model name

' ' (default) | character vector
Model name, stored as a character vector. You can specify Name using a string, such as "DCmotor", but the output units are stored as a character vector, 'DCmotor'.
Example: 'system_1'

SamplingGrid - Sampling grid for model arrays

structure with no fields (default) | structure
Sampling grid for model arrays, specified as a structure. For model arrays that are derived by sampling one or more independent variables, this property tracks the variable values associated with each model in the array. This information appears when you display or plot the model array. Use this information to trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables should be numeric and scalar valued, and all arrays of sampled values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking snapshots of a linear time-varying system at times $t=0: 10$. The following code stores the time samples with the linear models.

```
sysarr.SamplingGrid = struct('time',0:10)
```

Similarly, suppose you create a 6-by-9 model array, M, by independently sampling two variables, zeta and w. The following code attaches the (zeta, w) values to M.

```
[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct('zeta',zeta,'w',w)
```

When you display M , each entry in the array includes the corresponding zeta and w values.

```
M(:,:,1,1) [zeta=0.3, w=5] =
    2 5
    s^2 + 3 s + 25
M(:,:,2,1) [zeta=0.35, w=5] =
    2 5
    s^2 + 3.5 s + 25
```

For model arrays generated by linearizing a Simulink model at multiple parameter values or operating points, the software populates SamplingGrid automatically with the variable values that correspond to each entry in the array. For example, the Simulink Control Design commands linearize and slLinearizer populate SamplingGrid in this way.

Object Functions

Most functions that work on numeric LTI models also work on uss models. These include model interconnection functions such as connect and feedback, and linear analysis functions such as bode and stepinfo. Some functions that generate plots, such as bode and step, plot random samples of the uncertain model to give you a sense of the distribution of uncertain dynamics. When you use these commands to return data, however, they operate on the nominal value of the system only.

In addition, you can use functions such as robstab and wcgain to perform robustness and worstcase analysis of uncertain systems represented by uss models. You can also use tuning functions such as systune for robust controller tuning.

The following lists contain a representative subset of the functions you can use with uss models.

Model Interconnection

feedback Feedback connection of multiple models
connect Block diagram interconnections of dynamic systems
series Series connection of two models
parallel Parallel connection of two models

Linear Analysis

step Step response plot of dynamic system; step response data
bode Bode plot of frequency response, or magnitude and phase data
sigma Singular values plot of dynamic system
margin Gain margin, phase margin, and crossover frequencies
diskmargin Disk-based stability margins of feedback loops

Robustness and Worst-Case Analysis

uss/usample Generate random samples of uncertain or generalized model
robstab Robust stability of uncertain system
robgain Robust performance of uncertain system
wcgain Worst-case gain of uncertain system
wcsigmaplot Plot worst-case gain of uncertain system

Control System Design and Tuning

musyn Robust controller design using mu synthesis
systune Tune fixed-structure control systems modeled in MATLAB

Examples

Transfer Function with Uncertain Coefficients

Create a second-order transfer function with uncertain natural frequency and damping coefficient.

```
w0 = ureal('w0', 10);
zeta = ureal('zeta',0.7,'Range',[0.6,0.8]);
usys = tf(w0^2,[1 2*zeta*w0 w0^2])
usys =
    Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 2 states.
    The model uncertainty consists of the following blocks:
        w0: Uncertain real, nominal = 10, variability = [-1,1], 5 occurrences
        zeta: Uncertain real, nominal = 0.7, range = [0.6,0.8], 1 occurrences
```

Type "usys.NominalValue" to see the nominal value, "get(usys)" to see all properties, and "usys.
usys is an uncertain state-space (uss) model with two Control Design Blocks. The uncertain real parameter w0 occurs five times in the transfer function, twice in the numerator and three times in the denominator. To reduce the number of occurrences, you can rewrite the transfer function by dividing numerator and denominator by $w 0^{\wedge} 2$.

```
usys = tf(1,[1/w0^2 2*zeta/w0 1])
usys =
    Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 2 states.
    The model uncertainty consists of the following blocks:
        w0: Uncertain real, nominal = 10, variability = [-1,1], 3 occurrences
        zeta: Uncertain real, nominal = 0.7, range = [0.6,0.8], 1 occurrences
Type "usys.NominalValue" to see the nominal value, "get(usys)" to see all properties, and "usys.
```

In the new formulation, there are only three occurrences of the uncertain parameter w0. Reducing the number of occurrences of a Control Design Block in a model can improve the performance of calculations involving the model.

Examine the step response of the system to get a sense of the range of responses that the uncertainty represents.
step(usys)

Step Response

When you use linear analysis commands like step and bode to create response plots of uncertain systems, they automatically plot random samples of the system. While these samples give you a sense of the range of responses that fall within the uncertainty, they do not necessarily include the worstcase response. To analyze worst-case responses of uncertain systems, use wcgain or wcsigmaplot.

Uncertain State-Space Model

To create an uncertain state-space model, you first use Control Design Blocks to create uncertain elements. Then, use the elements to specify the state-space matrices of the system.

For instance, create three uncertain real parameters and build state-spaces matrices from them.

```
p1 = ureal('p1',10,'Percentage',50);
p2 = ureal('p2',3,'PlusMinus',[-.5 1.2]);
p3 = ureal('p3',0);
A = [-p1 p2; 0 -pl];
B = [-p2; p2+p3];
C = [1 0; 1 1-p3];
D = [0; 0];
```

The matrices constructed with uncertain parameters, A, B, and C, are uncertain matrix (umat) objects. Using them as inputs to ss results in a 2-output, 1-input, 2-state uncertain system.

```
sys = ss(A,B,C,D)
```

```
sys =
    Uncertain continuous-time state-space model with 2 outputs, 1 inputs, 2 states.
    The model uncertainty consists of the following blocks:
        p1: Uncertain real, nominal = 10, variability = [-50,50]%, 2 occurrences
        p2: Uncertain real, nominal = 3, variability = [-0.5,1.2], 2 occurrences
        p3: Uncertain real, nominal = 0, variability = [-1,1], 2 occurrences
Type "sys.NominalValue" to see the nominal value, "get(sys)" to see all properties, and "sys.Unc
```

The display shows that the system includes the three uncertain parameters.

System with Uncertain Dynamics

Create an uncertain system comprising a nominal model with a frequency-dependent amount of uncertainty. You can model such uncertainty using ultidyn and a weighting function that represents the frequency profile of the uncertainty. Suppose that at low frequency, below $3 \mathrm{rad} / \mathrm{s}$, the model can vary up to 40% from its nominal value. Around $3 \mathrm{rad} / \mathrm{s}$, the percentage variation starts to increase. The uncertainty crosses 100% at $15 \mathrm{rad} / \mathrm{s}$ and reaches 2000% at approximately $1000 \mathrm{rad} / \mathrm{s}$. Create a transfer function with an appropriate frequency profile, Wunc, to use as a weighting function that modulates the amount of uncertainty with frequency.

Wunc $=$ makeweight $(0.40,15,3)$;
bodemag (Wunc)

Next, create a transfer function representing the nominal value of the system. For this example, use a transfer function with a single pole at $s=-60 \mathrm{rad} / \mathrm{s}$. Then, create a ultidyn model to represent 1 input, 1-output uncertain dynamics, and add the weighted uncertainty to the nominal transfer function.

```
sysNom = tf(1,[1/60 1]);
unc = ultidyn('unc',[1 1],'SampleStateDim',3); % samples of uncertain dynamics have three states
usys = sysNom*(1 + Wunc*unc);
% Set properties of usys
usys.InputName = 'u';
usys.OutputName = 'fs';
```

Examine random samples of usys to see the effect of the uncertain dynamics.
bode(usys,usys.Nominal)

Properties of uss Objects

uss models, like all model objects, include properties that store dynamics and model metadata. View the properties of an uncertain state-space model.

```
p1 = ureal('p1',10,'Percentage',50);
p2 = ureal('p2',3,'PlusMinus',[-.5 1.2]);
```

```
p3 = ureal('p3',0);
A = [-p1 p2; 0 -p1];
B = [-p2; p2+p3];
C = [1 0; 1 1-p3];
D = [0; 0];
sys = ss(A,B,C,D); % create uss model
get(sys)
NominalValue: [2x1 ss]
    Uncertainty: [1x1 struct]
            A: [2x2 umat]
            B: [2x1 umat]
            C: [2x2 umat]
            D: [2x1 double]
            E: []
        StateName: {2x1 cell}
        StateUnit: {2x1 cell}
InternalDelay: [0x1 double]
        InputDelay: 0
        OutputDelay: [2x1 double]
            Ts: 0
            TimeUnit: 'seconds'
        InputName: {''}
        InputUnit: {''}
        InputGroup: [1x1 struct]
        OutputName: {2x1 cell}
        OutputUnit: {2x1 cell}
        OutputGroup: [1x1 struct]
            Notes: [0x1 string]
            UserData: []
                    Name: ''
SamplingGrid: [1x1 struct]
```

Most of the properties behave similarly to how they behave for ss model objects. The NominalValue property is itself an ss model object. You can therefore analyze the nominal value as you would any state-space model. For instance, compute the poles and step response of the nominal system.

```
pole(sys.NominalValue)
ans = 2\times1
    -10
    -10
step(sys.NominalValue)
```


As with the uncertain matrices (umat), the Uncertainty property is a structure containing the uncertain elements. You can use this property for direct access to the uncertain elements. For instance, check the Range of the uncertain element named p 2 within sys.
sys.Uncertainty.p2.Range
ans $=1 \times 2$
$2.5000 \quad 4.2000$

Change the uncertainty range of p 2 within sys.
sys.Uncertainty.p2.Range = [2 4];
This command changes only the range of the parameter called p2 in sys. It does not change the variable p2 in the MATLAB workspace.
p2.Range
ans $=1 \times 2$
$2.5000 \quad 4.2000$

See Also

ucomplex |ultidyn |umargin | umat | ureal |uss/usample

Topics

"Uncertain State-Space Models"
Introduced before R2006a

usubs

Substitute given values for uncertain elements of uncertain objects

Syntax

B = usubs(M,ElementName1,value1,ElementName2,value2,...)
$B=$ usubs (M, S)
$B=$ usubs ($M, \ldots,{ }^{\prime}$ - once')
B = usubs(M,...,'-batch')

Description

Use usubs to substitute a specific value for an uncertain element of an uncertain model object. The value can itself be uncertain. It needs to be the correct size, but otherwise can be of any class, and can be an array. Hence, the result can be of any class. In this manner, uncertain elements act as symbolic placeholders, for which specific values (which can also contain other placeholders too) can be substituted.
$B=$ usubs ($\mathrm{M}, \mathrm{ElementName1}, \mathrm{value1,ElementName2}, \mathrm{value2}, \mathrm{\ldots)} \mathrm{sets} \mathrm{the} \mathrm{elements} \mathrm{in} \mathrm{M}$, identified by ElementName1, ElementName2, etc., to the values in value1, value2, etc. respectively.

You can also use the character vectors 'NominalValue' or 'Random' as any value argument. If you do so, the nominal value or a random instance of the uncertain element is used. You can partially specify these character vectors, instead of typing the full expression. For example, you can use 'Nom ' or 'Rand'.
$B=$ usubs (M, S) instantiates the uncertain elements of M to the values specified in the structure S. The field names of S are the names of the uncertain elements to replace. The values are the corresponding replacement values. To provide several replacement values, make S a struct array, where each struct contains one set of replacement values. A structure such as S typically comes from robustness analysis commands such as robstab, usample, or wcgain.
$B=$ usubs ($M, \ldots,{ }^{\prime}$ ' - once' $)$ performs vectorized substitution in the uncertain model array M. Each uncertain element is replaced by a single value, but this value may change across the model array. To specify different substitute values for each model in the array M, use:

- A cell array for each valueN that causes the uncertain element ElementNameN in M(: , : , k) to be replaced by valueN(k). For example, if M is a 2-by-3 array, then a 2 -by-3 cell array valuel replaces ElementNamel of the model $\mathrm{M}(:,:, k)$ with the corresponding value1(k).
- A struct array S that specifies one set of substitute values $S(k)$ for each model $M(:,:, k)$.

Numeric array formats are also accepted for value1, value2, . . . For example, value1 can be a 2 -by-3 array of LTI models, a numeric array of size [size(name1) 2 3], or a 2-by-3 matrix when the uncertain element namel is scalar-valued. The array sizes of M, S, value1, value2, ... must agree along non-singleton dimensions. Scalar expansion takes place along singleton dimensions.

Vectorized substitution (' - once') is the default for model arrays when no substitution method is specified.
$B=$ usubs (M,...,' - batch') performs batch substitution in the uncertain model array M. Each uncertain element is replaced by an array of values, and the same values are used for all models in M. In batch substitution, B is a model array of size [size(M) VS], where VS is the size of the array of substitute values.

Examples

Evaluate Uncertain Matrix for Multiple Values of Uncertain Parameters

Evaluate an uncertain matrix at several different values of the uncertain parameters of the matrix.
Create an uncertain matrix with two uncertain parameters.

```
a = ureal('a',5);
b = ureal('b',-3);
M = [a b];
```

Evaluate the matrix at four different combinations of values for the uncertain parameters a and b.
$B=$ usubs(M,'a',[1;2;3;4],'b',[10;11;12;13]);
This command evaluates M for the four different (a, b) combinations $(1,10),(2,11)$, and so on. Therefore, B is a 1-by-2-by- 4 array of numeric values containing the four evaluated values of M.

Evaluate Uncertain Matrix over Grid of Uncertain Parameters

Evaluate an uncertain matrix over a 3-by-4 grid of values of the uncertain parameters of the matrix.
Create a 2-by-2 uncertain matrix with two uncertain parameters.

```
a = ureal('a',5);
b = ureal('b',-3);
M = [a b;0 a*b];
```

Build arrays of values for the uncertain parameters.

```
aval = [1;2;3;4];
bval = [10;20;30];
[as,bs] = ndgrid(aval,bval);
```

This command builds two 4-by-3 grids of values.
Evaluate M over the parameter grids A and B .
$B=$ usubs(M,'a',as,'b',bs);
This command evaluates M for each four different combination of values $(A(k), B(k))$. B is a 2-by-2-by-4-by-3 array of numeric values, which is a 4-by-3 array of values of M, i.e., M evaluated over the parameter grids.

Instantiate Uncertain Parameter by Batch Substitution of Parameter for Array of Values

Evaluate an array of uncertain models, substituting an array of values for an uncertain parameter.
Create a 1-by-2 uncertain matrix with two uncertain parameters.

```
a = ureal('a',5);
b = ureal('b',-3);
M = [a b];
```

Replace a by each of the values $1,2,3$, and 4 .
Ma = usubs(M,'a',[1;2;3;4]);
This command returns a 4-by-1 array of 1-by-2 uncertain matrices that contain one uncertain parameter b.

For each model in the array Ma, evaluate b at 10, 20, and 30.

```
B = usubs(Ma,'b',[10;20;30],'-batch');
```

The ' - batch ' flag causes usubs to evaluate each model in the array at all three values of b. Thus B is a 4-by-3 array of M values.

The ' - batch ' syntax here yields the same result as the parameter grid approach used in the previous example:

```
aval = [1;2;3;4];
bval = [10;20;30];
[as,bs] = ndgrid(aval,bval);
B = usubs(M,'a',as,'b',bs);
```


Instantiate Uncertain Parameter Using Different Value for Each Entry in Array

Evaluate an array of uncertain models, substituting a different value for the uncertain parameter in each entry in the array.

Create a 1-by-2 uncertain matrix with two uncertain parameters.
a = ureal('a',5);
b = ureal('b', -3);
$M=[a b] ;$
Replace a by each of the values $1,2,3$, and 4 .
Ma = usubs(M,'a',[1;2;3;4]);
This command returns a 4-by-1 array of 1-by-2 uncertain matrices that contain one uncertain parameter b.

For each model in the array Ma, evaluate b. Use $b=10$ for the first entry in the array, $b=20$ for the second entry, and so on.

```
B = usubs(Ma,'b',{10;20;30;40},'-once');
```

The ' - once' flag causes usubs to evaluate the first model in the array using the first specified value for b, the second model for the second specified value, etc.

Replace Uncertain Parameters with Values Returned by usample

Replace the uncertain parameters in an uncertain models by values specified in struct array form, as returned by usample.

This is useful, for example, when you have multiple uncertain models that use the same set of parameters, and you want to evaluate all models at the same parameter values.

Create two uncertain matrices that have the same uncertain parameters, a and b.
a = ureal('a',5);
b = ureal('b',-3);
M1 = [a b];
M2 = [a b;0 a*b];
Generate some random samples of M1.
[M1rand,samples] = usample(M1,5);
M1 rand is an array of five values of M1, evaluated at randomly generated values of a and b. These a and b values are returned in the struct array samples.

Examine the struct array samples.

```
samples
samples=5\times1 struct array with fields:
    a
    b
```

The field names of samples correspond to the uncertain parameters of M1. The values are the parameter values used to generate M1 rand. Because M2 has the same parameters, you can use this structure to evaluate M2 at the same set of values.
M2 rand $=$ usubs (M2, samples);
This command returns a 1-by-5 array of instantiations of M2.

See Also

gridureal|simplify|usample

Introduced before R2006a

wcdiskmargin

Worst-case disk-based stability margins of uncertain feedback loops

Syntax

```
[wcDM,wcu] = wcdiskmargin(L,'siso')
[WCMM,wcu] = wcdiskmargin(L,'mimo')
[wCMMIO,wcu] = wcdiskmargin(P,C)
    = wcdiskmargin(___,E)
    = wcdiskmargin(___,opts)
[
    ,info] = wcdiskmargin(
```


Description

The worst-case disk margin is the smallest disk margin that occurs within a specified uncertainty range. It is also the minimum guaranteed margin over the uncertainty range. wcdiskmargin estimates the worst-case disk margins and corresponding worst-case gain and phase margins for both loop-at-a-time and multiloop variations. The function also returns the worst-case perturbation, the combination of uncertain elements that yields the weakest margins.
[wcDM,wcu] = wcdiskmargin(L,'siso') estimates the worst-case loop-at-a-time disk-based stability margins for the uncertain negative feedback loop feedback (L , eye(N)), where N is the number of inputs and outputs in L.

While diskmargin computes stability margins for a nominal model, wcdiskmargin computes the worst-case (smallest) disk margin over the modeled uncertainty in L. Disk-based margin analysis provides a stronger guarantee of robust stability than the classical gain and phase margins. For general information about disk margins, see "Stability Analysis Using Disk Margins".
[wcMM,wcu] = wcdiskmargin(L,'mimo') estimates the worst-case multiloop disk margins.
[wcMMIO,wcu] = wcdiskmargin(P, C) computes the worst-case stability margins when considering independent, concurrent variations at both the plant inputs and plant outputs the negative feedback loop of the following diagram.

= wcdiskmargin(\qquad E) specifies an additional eccentricity parameter that biases the modeled gain and phase variation toward gain increase (positive E) or gain decrease (negative E). You can use this argument to test the relative sensitivity of stability margins to gain increases versus decreases. You can use this argument with any of the previous syntaxes.
= wcdiskmargin(\qquad , opts) specifies additional options for the computation. Use wcOptions to create opts. You can use opts with any of the previous syntaxes.
[\qquad ,info] = wcdiskmargin(\qquad) returns a structure with additional information about the worst-case margins and the perturbations that generate them. You can use this output argument with any of the previous syntaxes.

Examples

Worst-Case Disk Margins for Uncertain MIMO Feedback Loop

Use wcdiskmargin to compute worst-case loop-at-a-time and multiloop disk margins. This example illustrates that loop-at-a-time margins can give an overly optimistic assessment of the true robustness of MIMO feedback loops. Margins of individual loops can be sensitive to small perturbations within other loops.

Consider the closed-loop system of the following illustration.

P is a two-input, two-output second-order plant and C is a 2×2 static gain. Construct P in state-space form, assuming that it has an uncertain parameter and some dynamic uncertainty. Compute the worst-case disk margins at the plant output (to compute the margins at the plant input, use $\mathrm{L}=$ C*Pu).

```
p = ureal('p',10,'Percentage',10);
a = [-0.2 p;-p -0.2];
b = eye(2);
c = [1 p;-p 1];
d = zeros(2,2);
P = ss(a,b,c,0);
DEL = ultidyn('DEL',[2 2],'Bound',0.1);
```

```
Pu = P*(eye(2)+DEL);
C = [1 -2;0 1];
L = Pu*C;
[wcDM,wcu] = wcdiskmargin(L,'siso');
```

Examine the worst-case loop-at-a-time disk margins, returned in the structure array wcDM. Each entry in this structure array contains the worst-case stability margins of the corresponding channel.

```
wcDM(1)
ans = struct with fields:
    GainMargin: [0.5298 1.8875]
    PhaseMargin: [-34.1696 34.1696]
        DiskMargin: 0.6147
        LowerBound: 0.6147
        UpperBound: 0.6160
    CriticalFrequency: 0
    WorstPerturbation: [2x2 ss]
```

The result in wCDM (1) gives guaranteed stability margins for the specified uncertainty range. As long as the open-loop gain of the first channel changes by a factor between 0.53 and 1.88 , the closed loop remains stable for all ($p, D E L$) values within the specified range. Similarly, the closed loop remains stable as long as the phase variation does not exceed 34° in absolute value.

Similarly, wCDM (2) shows that in the second feedback channel, the gain can vary by any factor between 0.52 and 1.93 or the phase can vary by up to 35°, and the system remains stable for such variations and the ($p, D E L$) uncertainty.

```
wcDM(2)
ans = struct with fields:
    GainMargin: [0.5167 1.9352]
    PhaseMargin: [-35.3450 35.3450]
        DiskMargin: 0.6372
        LowerBound: 0.6372
        UpperBound: 0.6386
    CriticalFrequency: 0
    WorstPerturbation: [2x2 ss]
```

The lower bound returned by wcdiskmargin is a theoretical minimum guaranteed worst-case disk margin. The upper bound corresponds to an actual perturbation in the specified uncertainty range that approaches the lower-bound prediction. The output wcu contains the values of that perturbation for each feedback channel. For example, wcu(2) is the worst combination of (alpha,DEL) for the second channel, and the disk margins for this worst combination are close to wcDM(2). In particular, DM (2).UpperBound and wCDM (1). UpperBound match.

```
wCL = usubs(L,wcu(2));
DM = diskmargin(wCL);
DM(2)
ans = struct with fields:
    GainMargin: [0.5159 1.9382]
    PhaseMargin: [-35.4184 35.4184]
    DiskMargin: 0.6386
```

```
    LowerBound: 0.6386
    UpperBound: 0.6386
    Frequency: 0
WorstPerturbation: [2x2 ss]
```

In practice, gain and phase variations affect both channels simultaneously. To estimate the stability margins with respect to such independent and concurrent variations, examine the worst-case multiloop disk margins.

```
wcMM = wcdiskmargin(L,'mimo')
wCMM = struct with fields:
            GainMargin: [0.8836 1.1317]
            PhaseMargin: [-7.0729 7.0729]
        DiskMargin: 0.1236
        LowerBound: 0.1236
        UpperBound: 0.1239
    CriticalFrequency: 0
    WorstPerturbation: [2x2 ss]
```

The multiloop margins are much weaker than when considering one loop at a time. This is because it takes a smaller amount of gain (or phase) variation to destabilize the feedback loop when both channels are subject to variations.

You can visualize how uncertainty affects the margins with wcdiskmarginplot. This plots the (diskbased) gain and phase margins as a function of frequency for the nominal and worst-case values of (alpha, DEL) as well as 20 random samples of this uncertainty. The plot shows that uncertainty weakens the margins most near DC.

```
wcdiskmarginplot(L,{1e-1,1e1})
legend('location','NorthWest')
```

Disk-Based Stability Margins

Finally, compute the multiloop margin for simultaneous variations in gain (or phase) at both the plant inputs and plant outputs. When you allow the gain (or phase) to vary in more places, it becomes easier to destabilize the feedback loop, so the margins get even smaller. Thus, the multiloop I/O margin provide the most comprehensive and most conservative assessment of robust stability in the face of gain or phase variations and (alpha, DEL) uncertainty.

```
wcMMIO = wcdiskmargin(Pu,C)
wcMMIO = struct with fields:
    GainMargin: [0.9363 1.0680]
    PhaseMargin: [-3.7681 3.7681]
        DiskMargin: 0.0658
        LowerBound: 0.0658
        UpperBound: 0.0659
    CriticalFrequency: 1.0000e-04
    WorstPerturbation: [1x1 struct]
```


Input Arguments

L - Uncertain open-loop response

uncertain model | model array
Uncertain open-loop response, specified as an uncertain model such as a uss or ufrd model. L can be SISO or MIMO, as long as it has the same number of inputs and outputs. wcdiskmargin
computes the worst-case disk-based stability margins for the negative-feedback closed-loop system feedback(L,eye(N)).

To compute the worst-case disk margins of the positive feedback system feedback(L,eye(N),+1), use wcdiskmargin(-L).

When you have a controller P and a plant C, you can compute the worst-case disk margins for gain (or phase) variations at the plant inputs or outputs, as in the following diagram.

- To compute margins at the plant outputs, set $L=P^{*} C$.
- To compute margins at the plant inputs, set $L=C * P$.
- To consider variations at both the plant inputs and the plant output, use the syntax [wcMMIO,wcu] = wcdiskmargin(P, C) instead.
L can be continuous time or discrete time. If L is a generalized state-space model (genss) then wcdiskmargin uses the current value of the tunable control design blocks in L.

If L is a frequency-response data model (such as ufrd), then wcdiskmargin computes the margins at each frequency represented in the model. The function returns the worst-case margins at the frequency with the smallest disk margin.

If L is a model array, then wcdiskmargin computes margins for each model in the array.

P - Plant

uncertain model
Plant, specified as an uncertain model such as a uss or ufrd model. P can be SISO or MIMO, as long as $\mathrm{P}^{*} \mathrm{C}$ has the same number of inputs and outputs. wcdiskmargin computes the worst-case disk margins for a negative-feedback closed-loop system. To compute the disk margins of the system with positive feedback, use wcdiskmargin($\mathrm{P},-\mathrm{C}$).
P can be continuous time or discrete time. If P is a generalized state-space model (genss) then wcdiskmargin uses the current value of the tunable control design blocks in P.

If P is a frequency-response data model (such as $f r d$), then wcdiskmargin computes the margins at each frequency represented in the model. The function returns the worst-case margins at the frequency with the smallest disk margin.

C - Controller

dynamic system model
Controller, specified as a dynamic system model. C can be SISO or MIMO, as long as P*C has the same number of inputs and outputs. wcdiskmargin computes the disk-based stability margins for a negative-feedback closed-loop system. To compute the disk margins of the system with positive feedback, use wcdiskmargin(-C,P).

C can be continuous time or discrete time. If C is a generalized state-space model (genss) then wcdiskmargin uses the current value of the tunable control design blocks in C .

If C is a frequency-response data model (such as frd), then wcdiskmargin computes the margins at each frequency represented in the model. The function returns the worst-case margins at the frequency with the smallest disk margin.

E-Eccentricity

0 (default) | real scalar
Eccentricity of uncertainty region used to compute the stability margins, specified as a real scalar value. This parameter biases the uncertainty used to model gain and phase variations toward gain increase or gain decrease.

- The default $E=0$ uses a balanced model of gain variation in a range [gmin, gmax], with gmin = 1/gmax.
- Positive E uses a model with more gain increase than decrease (gmin > $1 /$ gmax).
- Negative E uses a model with more gain decrease than increase (gmin < 1/gmax).

Use the default $E=0$ to get unbiased estimates of gain and phase margins. You can test relative sensitivity to gain increase and decrease by comparing the margins obtained with both positive and negative E values. For more detailed information about how the choice of E affects the margin computation, see "Stability Analysis Using Disk Margins".

opts - Options for margin computation

wcOptions object
Options for worst-case computation, specified as an object you create with wcOptions. The available options include settings that let you:

- Extract frequency-dependent worst-case margins.
- Examine the sensitivity of the worst-case margins to each uncertain element.
- Improve the results of the worst-case margin calculation by setting certain options for the underlying mussv calculation.

For more information about all available options, see wcOptions.
Example: wcOptions('Sensitivity','on','Mussv0ptions','m3')

Output Arguments

wcDM - Worst-cast disk margins for each feedback channel

structure | structure array
Worst-case disk margins for each feedback channel with all other loops closed, returned as a structure for SISO feedback loops, or an N-by-1 structure array for a MIMO loop with N feedback channels. The fields of wcDM(i) are:

Field	Value
GainMargin	Minimum guaranteed disk-based gain margin of the corresponding feedback channel, returned as a vector of the form [gmin,gmax]. These values mean that as long as the open-loop gain of the ith channel changes by a factor no less than gmin and no more than gmax, the closed loop remains stable for all uncertainty values within the ranges specified in L. If the closed-loop system goes unstable for some combination of uncertainty values, then DM(i).GainMargin = [1 1].
PhaseMargin	Minimum guaranteed disk-based phase margin of the corresponding feedback channel, returned as a vector of the form [- pm, pm] in degrees. If the closed-loop system goes unstable for some combination of uncertainty values, then wcDM(i). PhaseMargin = [0 0].
DiskMargin	Minimum guaranteed disk margin (see "Stability Analysis Using Disk Margins" for the definition and interpretation of the disk margin). If the closed-loop system is unstable for some combination of uncertain-element values, then wcDM(i) .DiskMargin = 0.
LowerBound	Lower bound on worst-case disk margin. This value is the same as DiskMargin.
UpperBound	Upper bound on worst-case disk margin. This value is the disk margin obtained for the worst perturbation found by wcdiskmargin, returned as wcu(i). The actual worst-case disk margin is no better than this value.
CriticalFrequency	Frequency at which the disk margin for the worst perturbation wcu(i) is weakest, as a function of frequency. This value is in rad/TimeUnit, where TimeUnit is the TimeUnit property of L.

Field	Value
WorstPerturbation	Smallest gain and phase variation that drives the feedback loop unstable for the worst-case combination of uncertain elements. The perturbation is returned as a state-space (ss) model with N inputs and outputs, where N is the number of inputs and outputs in L. The system $F(s)=$ WorstPerturbation is such that for the worst-case combination of uncertain elements of L (the values returned in wcu) the following feedback loop has a pole on the stability boundary at wwDM.CriticalFrequency. This state-space model is a diagonal perturbation of the form $F(s)=$ $\operatorname{diag}(f 1(s), \ldots, f N(s))$. Each $f j(s)$ is a real-parameter dynamic system that realizes the worst-case complex gain and phase variation applied to each channel of the feedback loop. For the loop-at-a-time margin of the $k^{\text {th }}$ feedback loop, only the $k^{\text {th }}$ entry $\mathrm{fk}(\mathrm{s})$ of DM (k). WorstPerturbation differs from unity. This field is different from the WorstPerturbation field of the info output argument. That field contains the values of the uncertain elements of L that yield the smallest margins at each frequency.

When $\mathrm{L}=\mathrm{P} * \mathrm{C}$ is the open-loop response of a system comprising a controller and plant with unit negative feedback in each channel, wcDM contains the stability margins for variations at the plant outputs. To compute the stability margins for variations at the plant inputs, use $L=C * P$. To compute the stability margins for simultaneous, independent variations at both the plant inputs and outputs, use wcMMIO = wcdiskmargin(P, C).

When L is a model array, wcDM has additional dimensions corresponding to the array dimensions of L . For instance, if L is a 1 -by- 3 array of two-input, two-output models, then wcDM is a 2 -by- 3 structure array. $\mathrm{WCDM}(\mathrm{j}, \mathrm{k})$ contains the margins for the $\mathrm{j}^{\text {th }}$ feedback channel of the $\mathrm{k}^{\text {th }}$ model in the array.

wcu - Perturbation yielding the weakest margins

structure array | structure
Perturbation of uncertain elements yielding the weakest margins, returned as:

- A structure array of dimensions N-by- 1 for loop-at-a-time margins, where N is the number of feedback channels
- A scalar structure for multiloop margins

The lower bound returned by wcdiskmargin is a theoretical minimum guaranteed worst-case disk margin. The upper bound corresponds to an actual perturbation in the specified uncertainty range that approaches the lower-bound prediction. wcu contains the values of that perturbation. For example, if the input system includes uncertain elements M and delta, then wcu. M and wcu. delta
contain the worst perturbations found by wcdiskmargin. It is possible that a worse perturbation exists, but no perturbation can yield a worse margin than the lower bound returned by wcdiskmargin.

Use usubs to substitute these values for the uncertain elements in the input system, to obtain the dynamic system that has the worst-case disk margin.

wCMM — Worst-case multiloop disk margins

structure

Worst-case multiloop disk margins, returned as a structure. The gain (or phase) margins quantify how much gain variation (or phase variation) the system can tolerate in all feedback channels at once while remaining stable. Thus, MM is a single structure regardless of the number of feedback channels in the system. (For SISO systems, MM = DM.) The fields of MM are:

Field	Value
GainMargin	Minimum guaranteed multiloop disk-based gain margin, returned as a vector of the form [gmin, gmax]. These values mean that as long as the gain in all loop channels changes by a factor no less than gmin and no more than gmax, the closed loop remains stable for all uncertainty values within the ranges specified in L. If the closed-loop system goes unstable for some combination of uncertainty values, then wcMM. GainMargin = [$1]$.
PhaseMargin	Minimum guaranteed multiloop disk-based phase margin, returned as a vector of the form [-pm, pm] in degrees. If the closed-loop system goes unstable for some combination of uncertainty values, then wcMM. PhaseMargin = [0 0].
DiskMargin	Minimum guaranteed disk margin (see "Stability Analysis Using Disk Margins" for the definition and interpretation of the disk margin). If the closed-loop system is unstable for some combination of uncertain-element values, then wcMM.DiskMargin = 0.
LowerBound	Lower bound on worst-case disk margin. This value is the same as DiskMargin.
UpperBound	Upper bound on worst-case disk margin. This value is the disk margin obtained for the worst perturbation found by wcdiskmargin, returned as wcu. The actual worst-case multiloop disk margin is no better than this value.
CriticalFrequency	Frequency at which the disk margin for the worst perturbation wcu is weakest, as a function of frequency. This value is in rad/TimeUnit, where TimeUnit is the TimeUnit property of L.

Field	Value
WorstPerturbation	Smallest gain and phase variation that drives the feedback loop unstable for the worst-case combination of uncertain elements. The perturbation is returned as a state-space (ss) model with N inputs and outputs, where N is the number of inputs and outputs in L . The system $\mathrm{F}(\mathrm{s})=$ WorstPerturbation is such that for the worst-case combination of uncertain elements of L (the values returned in wcu) the following feedback loop has a pole on the stability boundary at wwMM. CriticalF requency.
	This state-space model is a diagonal perturbation of the form $\mathrm{F}(\mathrm{s})=$ diag $\mathrm{fl}(\mathrm{s}), \ldots . . \mathrm{fN}$ (s$)$). Each fj (s) is a real-parameter dynamic system that realizes the worst-case complex gain and phase variation applied to each channel of the feedback loop.
This field is different from the WorstPerturbation field of the info output argument. That field contains the values of the uncertain elements of L that yield the smallest margins at each frequency.	

When $\mathrm{L}=\mathrm{P} * \mathrm{C}$ is the open-loop response of a system comprising a controller and plant with unit negative feedback in each channel, MM contains the stability margins for variations at the plant outputs. To compute the stability margins for variations at the plant inputs, use $\mathrm{L}=\mathrm{C} * \mathrm{P}$. To compute the stability margins for simultaneous, independent variations at both the plant inputs and outputs, use wcMMIO = wcdiskmargin(P, C).

When L is a model array, $M M$ is a structure array with one entry for each model in L.

wCMMIO - Worst-case disk margins for independent variations in all input and output channels

structure
Worst-case disk margins for independent variations in all input and output channels of the plant P , returned as a structure having the same fields as wCMM.

For variations applied simultaneously at inputs and outputs, the WorstPerturbation field is itself a structure with fields Input and Output. Each of these fields contains a state-space model such that for Fi(s) = wcMMIO.WorstPerturbation.Input and Fo(s) = wCMMIO. WorstPerturbation. Output, the system of the following diagram is marginally unstable, with a pole on the stability boundary at the frequency wwMMIO. CriticalFrequency, when P is evaluated with the worst-case uncertainty values wcu.

These state-space models Input and Output are diagonal perturbations of the form $F(s)=$ $\operatorname{diag}(f 1(s), \ldots, f N(s))$. Each $f j(s)$ is a real-parameter dynamic system that realizes the worstcase complex gain and phase variation applied to each channel of the feedback loop.

info - Additional information about worst-case values

structure
Additional information about the worst-case values, returned as a structure with the following fields:

Field	Description
Model	Index of the model that has the smallest disk margin, when L is an array of models.
Frequency	Frequency points at which wcdiskmargin returns the minimum guaranteed margins, returned as a vector. - If the 'VaryFrequency ' option of wcOptions is 'off' , then info. Frequency is the critical frequency, the frequency at which the worst-case disk margin occurs. If the largest lower bound and the smallest upper bound on the worst-case disk margin occur at different frequencies, then info. Frequency is a vector containing these two frequencies. - If the 'VaryFrequency' option of wcOptions is 'on', then info.Frequency contains the frequencies selected by wcdiskmargin. These frequencies are guaranteed to include the frequency at which the worstcase disk margin occurs. The 'VaryFrequency ' option is meaningful only for uss and genss models. wcdiskmargin ignores the option for ufrd and genfrd models.
Bounds	Lower and upper bounds on the actual worst-case disk margin of the model, returned as an array. info. Bounds (:, 1) contains the lower bound at each corresponding frequency in info. Frequency, and info. Bounds (: , 2) contains the corresponding upper bounds.

Field	Description			
WorstPerturbation	Worst perturbations at each frequency point in info. Frequency, returned as a structure array. Here, worst refers to the perturbations that cause the smallest disk margin at a particular frequency. The fields of info. WorstPerturbation are the names of the uncertain elements in the input model. Each field contains the worst value of the corresponding element at each frequency. For example, if L includes an uncertain parameter p and SISO uncertain dynamics delta, then info. WorstPerturbation. p is a collection of numeric values and info. WorstPerturbation. delta is a collection of SISO state-space models.			
info. WorstPerturbation contains the minimum-margin				
values of the uncertain elements in the input system L or P.				
It is distinct from the WorstPerturbation field of the				
output structures wcDM, wcMM, and wcMMIO. Those field				
contain state-space models representing the smallest gain				
and phase variations that drive the feedback loop unstable.		$,$	Sensitivity of the worst-case disk margin to each uncertain
:---				
element, returned as a structure when the 'Sensitivity '				
option of wcOptions is 'on'. The fields of				
info. Sensitivity are the names of the uncertain				
elements in the input model. Each field contains a				
percentage that measures how much the uncertainty in the				
corresponding element affects the worst disk margin. For				
example, if info. Sensitivity.p is 50, then a given				
fractional change in the uncertainty range of p causes half				
as much fractional change in the worst disk margin.				
Sensitivity				
If the ' Sensitivity ' option of wcOptions is off (the				
default setting), then info. Sensitivity is NaN.				

Tips

- wcdiskmargin assumes negative feedback. To compute the worst-case disk margins of a positive feedback system, use wcdiskmargin(-L) or wcdiskmargin($\mathrm{P},-\mathrm{C}$).
- You can visualize worst-case disk margins with wcdiskmarginplot.

Algorithms

wcdiskmargin models gain (and phase) variation as umargin uncertainty, combines it with the specified plant uncertainty, and uses mussv to compute the worst-case disk margins and perturbation. This generalizes the diskmargin algorithm to feedback loops with uncertainty. For more information about disk-margin computation and interpretation, see "Stability Analysis Using Disk Margins".

See Also

diskmargin |wcOptions | wcdiskmarginplot | wcgain

Topics

"Stability Analysis Using Disk Margins"

Introduced in R2018b

wcgain

Worst-case gain of uncertain system

Syntax

[wcg,wcu] = wcgain(usys)
[wcg,wcu] = wcgain(usys,w)
[wcg,wcu] = wcgain (__,op ,opts)
[wcg,wcu,info] = wcgain(\qquad

Description

[wcg,wcu] = wcgain(usys) calculates the worst-case peak gain of the uncertain system usys. Peak gain refers to the maximum gain over frequency (H_{∞} norm). For multi-input, multi-output (MIMO) systems, gain refers to the largest singular value of the frequency response matrix. (See sigma for more information about singular values.) The structure wcg contains upper and lower bounds on the worst-case gain and the critical frequency at which the lower bound peaks. (See "Worst-Case Gain" on page 1-603.) The structure wcu contains the values of the uncertain elements of usys that cause the worst-case peak gain.
[wcg,wcu] = wcgain(usys, w) restricts worst-case computation to the frequencies specified by w .

- If w is a cell array of the form $\{w m i n, w m a x\}$, then wcgain returns the worst-case gain in the interval between wmin and wmax.
- If w is a vector of frequencies, then wcgain calculates the worst-case gain at the specified frequencies only, and returns the worst of those gains.
[wcg,wcu] = wcgain(__ ,opts) specifies additional options for the computation. Use wcOptions to create opts. You can use this syntax with any of the previous input-argument combinations.
[wcg,wcu,info] = wcgain(__) returns a structure with additional information about the worst-case gains and the perturbations that generate them. See info for details about this structure. You can use this syntax with any of the previous input-argument combinations.

Examples

Worst-Case Peak Gain of Closed-Loop System

Consider a control system whose plant is nominally an integrator with some additive dynamic uncertainty. Create a model of the plant.

```
delta = ultidyn('delta',[1 1],'bound',0.4);
G = tf(1,[1 0]) + delta;
```

Create a PD controller for the model. Suppose you want to examine the worst-case disturbance rejection performance. Build the closed-loop sensitivity function to examine the worst-case gain of a disturbance at the plant input.

```
C = pid(2,0,-0.04,0.02);
S = feedback(1,G*C);
```

Because of the uncertainty, the frequency response of this transfer function falls within some envelope. The frequency-response magnitude of a few samples of the system gives a sense of that envelope.
bodemag (S)

Each sample has a different peak gain. Find the highest peak-gain value within the envelope and the corresponding values for the uncertain elements.

```
[wcg,wcu] = wcgain(S);
wcg
wcg = struct with fields:
    LowerBound: 5.1036
    UpperBound: 5.1140
    CriticalFrequency: 10.7241
```

The LowerBound and UpperBound fields of wcg show that the worst-case peak gain is around 5.1. This gain occurs at the critical frequency around $10.6 \mathrm{rad} / \mathrm{s}$.

The output wcu is a structure that contains the perturbation to delta that causes the worst-case gain. Confirm the result by substituting this value into the sensitivity function.

```
Swc = usubs(S,wcu);
getPeakGain(Swc)
ans = 5.1037
```

Because the system has dynamic uncertainty delta with gain not exceeding 0.4 , the worst-case value of delta should be a system with peak gain of 0.4. Confirm this result.

```
getPeakGain(wcu.delta)
```

ans $=0.4000$

Worst-Case Gain at Frequencies in a Range

Consider a model of a control system containing uncertain elements.

```
k = ureal('k',10,'Percent',40);
delta = ultidyn('delta',[1 1]);
G = tf(18,[1 1.8 k]) * (1 + 0.5*delta);
C = pid(2.3,3,0.38,0.001);
CL = feedback(G*C,1);
```

By default, wcgain returns only the worst-case peak gain over all frequencies. To obtain worst-case gain values at multiple frequencies, use the 'VaryFrequency' option of wcOptions. For example, compute the highest possible gain of the system at frequency points between 0.1 and $10 \mathrm{rad} / \mathrm{s}$.

```
opts = wcOptions('VaryFrequency','on');
[wcg1,wcul,infol] = wcgain(CL,{0.1,10},opts);
infol
infol = struct with fields:
                            Model: 1
        Frequency: [19x1 double]
            Bounds: [19x2 double]
        WorstPerturbation: [19x1 struct]
            Sensitivity: [1x1 struct]
    BadUncertainValues: [19x1 struct]
    ArrayIndex: 1
```

wcgain returns the vector of frequencies in the info output, in the Frequencies field.
info. Bounds contains the upper and lower bounds on the worst-case gain at each frequency. Use these values to plot the frequency dependence of the worst-case gain.

```
semilogx(infol.Frequency,info1.Bounds)
title('Worst-Case Gain vs. Frequency')
ylabel('Gain')
xlabel('Frequency')
legend('Lower bound','Upper bound','Location','northwest')
```


The curve shows the high-gain envelope for all systems within the uncertainty ranges of CL. You can also use wcsigmaplot to plot this envelope along with samples of the system.

When you use the 'VaryFrequency' option, wcgain chooses frequency points automatically. The frequencies it selects are guaranteed to include the frequency at which the worst-case gain is highest (within the specified range). Display the returned frequency values to confirm that they include the critical frequency.

```
infol.Frequency
ans = 19\times1
    0.1000
    0.1061
    0.1425
    0.1914
    0.2572
    0.3455
    0.4642
    0.6236
    0.8377
    1.1253
wcg1.CriticalFrequency
ans = 6.0749
```

Alternatively, instead of using 'VaryFrequency', you can specify particular frequencies at which to compute the worst-case gains. info. Bounds contains the worst-case gains at all specified frequencies.

```
w = logspace(-1,1,24);
[wcg2,wcu2,info2] = wcgain(CL,w);
semilogx(w,info2.Bounds)
title('Worst-Case Gain vs. Frequency')
ylabel('Gain')
xlabel('Frequency')
legend('Lower bound','Upper bound','Location','northwest')
```


When you provide the frequency grid in this way, the results are not guaranteed to include the overall worst-case gain, which might fall between specified frequency points. To see this, examine wcg1 and wcg2, which contain the bounds for the two approaches.

```
wcg1
wcg1 = struct with fields:
    LowerBound: 2.0848
    UpperBound: 2.0897
    CriticalFrequency: 6.0749
wcg2
wcg2 = struct with fields:
    LowerBound: 2.0349
```

wcg1, computed using VaryFrequency, finds a higher peak gain than the specified frequency grid.

Determine Effect of Uncertainty Range on Worst-Case Response

Consider a feedback loop with a first-order plant and a PI controller. The time constant of the plant is uncertain, and the feedback loop accounts for unmodeled dynamic uncertainty. Compute the worstcase gain of the sensitivity function Si at the plant inputs. Use the 'Sensitivity' option of wcOptions to compute how sensitive this worst-case gain is to each uncertain element.

```
% Create uncertain system and controller
delta = ultidyn('delta',[1 1]);
tau = ureal('tau',5,'range',[4 6]);
P = tf(1,[tau 1])*(1+0.25*delta);
C = pid(4,4);
opt = wcOptions('Sensitivity','on');
Si = inv(1 + C*P);
[wcg,~,info] = wcgain(Si,opt);
```

The Sensitivity field of the info output structure includes data that reflects how much the maximum gain of the input sensitivity function changes with each uncertain element.

```
info.Sensitivity
ans = struct with fields:
    delta: 44
        tau: 9
```

This result tells you that if the uncertainty range of delta increases by 10%, the peak input sensitivity increases by about 4.4%. Similarly, a 10% increase in the uncertainty range of tau causes about a 0.9% increase in the peak input sensitivity.

Improve Worst-Case Perturbation

Specifying certain options for the structured-singular-value computation that underlies the worst-gain computation can yield better results in some cases. For example, consider a sample plant and controller.

```
load('wcgExampleData.mat')
```

This command loads gPlant, a MIMO plant with 10 outputs, 8 inputs, and 11 uncertain elements. It also loads Kmu, a state-space controller model. Form a closed-loop system with these models, and examine the worst-case gain.

```
CL = lft(gPlant,Kmu);
[wcg,wcu] = wcgain(CL);
wcg
```

```
wcg = struct with fields:
    LowerBound: 10.8742
    UpperBound: 11.2135
    CriticalFrequency: 6.6794
```

There is a large difference between the lower and upper bounds on the worst-case gain. To get a better estimate of the actual worst-case gain, increase the number of restarts that wcgain uses for computing of the worst-case perturbation and associated lower bound. Doing so can result in a tighter lower bound. This option does not affect the upper-bound calculation.

```
opt = wcOptions('MussvOptions','m3');
[wcg,wcu] = wcgain(CL,opt);
wcg
wcg = struct with fields:
    LowerBound: 10.8742
    UpperBound: 11.2135
    CriticalFrequency: 6.6794
```

The difference between the lower bound and upper bound on the worst-case gain is much smaller. The critical frequency is different as well.

Input Arguments

usys - Dynamic system with uncertainty
uss | ufrd | genss | genfrd
Dynamic system with uncertainty, specified as a uss, ufrd, genss, or genfrd model that contains uncertain elements. For genss or genfrd models, wcgain uses the current value of any tunable blocks and folds them into the known (not uncertain) part of the model.
usys can also be an array of uncertain models. In that case, wcgain returns the worst-case gain across all models in the array, and the info output contains the index of the corresponding model.

w- Frequencies

\{wmin, wmax\} | vector
Frequencies at which to compute worst-case gains, specified as the cell array \{wmin,wmax\} or as a vector of frequency values.

- If w is a cell array of the form \{wmin, wmax\}, then the function returns the worst-case gain in the interval between wmin and wmax.
- If w is a vector of frequencies, then the function computes the worst-case gain at each specified frequency.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the model.

opts - Options for margin computation
 wcOptions object

Options for worst-case computation, specified as an object you create with wcOptions. The available options include settings that let you:

- Extract frequency-dependent worst-case gains (see "Worst-Case Gain" on page 1-603).
- Examine the sensitivity of the worst-case gain to each uncertain element.
- Improve the results of the worst-case gain calculation by setting certain options for the underlying mussv calculation. For an example, see "Improve Worst-Case Perturbation" on page 1-599.

For more information about all available options, see wcOptions.
Example: wcOptions('Sensitivity', 'on', 'Mussv0ptions', 'm3')

Output Arguments

wcg - Worst-case peak gain and critical frequency

structure
Worst-case peak gain and critical frequency, returned as a structure containing the following fields:

Field	Description
LowerBound	Lower bound on the actual worst-case peak gain of the model, returned as a scalar value. This value is the peak gain corresponding to the worst-case perturbation wcu. The exact worst-case peak gain is guaranteed to be no smaller than LowerBound.
UpperBound	Upper bound on the actual worst-case peak gain of the model, returned as a scalar value. The exact worst-case peak gain is guaranteed to be no larger than UpperBound. When you specify a frequency grid as a vector w, the guarantee only applies at the specified frequencies.
CriticalFrequency	Frequency at which the worst-case peak gain occurs, in rad/TimeUnit, where TimeUnit is the TimeUnit property of usys.

wcu - Worst-case perturbation

structure
Worst case perturbation of uncertain elements, returned as a structure whose fields are the names of the uncertain elements of usys. Each field contains the actual value of the corresponding uncertain element of usys when the worst-case peak gain occurs. For example, if usys includes an uncertain matrix M and SISO uncertain dynamics delta, then wcu. M is a numeric matrix and wcu. delta is a SISO state-space model.

Use usubs (usys, wcu) to substitute these values for the uncertain elements in usys, to obtain the dynamic system that has the worst-case peak gain.

info - Additional information about worst-case values

structure
Additional information about the worst-case values, returned as a structure with the following fields:

Field	Description
Model	Index of the model that has the largest worst-case peak gain, when usys is an array of models.

Field	Description
Frequency	Frequency points at which wcgain returns the worst-case gain, returned as a vector. - If the 'VaryFrequency' option of wcOptions is 'off' , then info. Frequency is the critical frequency, the frequency at which the worst-case peak gain occurs. If the largest lower bound and the smallest upper bound on the worst-case gain occur at different frequencies, then info. Frequency is a vector containing these two frequencies. - If the 'VaryFrequency ' option of wcOptions is 'on', then info. Frequency contains the frequencies selected by wcgain. These frequencies are guaranteed to include the frequency at which the worst-case peak gain occurs. - If you specify a vector of frequencies w at which to compute the worst-case gains, then info. Frequency $=\mathrm{w}$. When you specify a frequency vector, these frequencies are not guaranteed to include the frequency at which the worst-case peak gain occurs. The 'VaryFrequency' option is meaningful only for uss and genss models. wcgain ignores the option for ufrd and genfrd models.
Bounds	Lower and upper bounds on the actual worst-case gain of the model, returned as an array. info. Bounds (: , 1) contains the lower bound at each corresponding frequency in info. Frequency, and info. Bounds (: , 2) contains the corresponding upper bounds.
WorstPerturbation	Perturbations that cause the worst-case gain at each frequency point in info. Frequency, returned as a structure array. The fields of info.WorstPerturbation are the names of the uncertain elements in usys, and each field contains the worst-case value of the corresponding element at each frequency. For example, if usys includes an uncertain parameter p and SISO uncertain dynamics delta, then info.WorstPerturbation. p is a collection of numeric values and info. WorstPerturbation.delta is a collection of SISO state-space models.

Field	Description
Sensitivity	Sensitivity of the worst-case gain to each uncertain element, returned as a structure when the 'Sensitivity' option of wc0ptions is 'on '. The fields of info. Sensitivity are the names of the uncertain elements in usys. Each field contains a percentage that measures how much the uncertainty in the corresponding element affects the worst-case gain. For example, if info. Sensitivity.p is 50, then a given fractional change in the uncertainty range of p causes half as much fractional change in the worst-case gain. If the 'Sensitivity' option of wc0ptions is off (the default setting), then info. Sensitivity is NaN.
BadUncertainValues	Same as WorstPerturbation. Included for compatibility with R2016a and earlier.
ArrayIndex	Same as Model. Included for compatibility with R2016a and earlier.

More About

Worst-Case Gain

By default, wcgain returns the peak gain (or peak singular value, for MIMO systems) achievable within the uncertainty range, over all frequencies (or the frequencies specified by w). You can obtain the peak gain as a function of frequency using the VaryFrequency option of wcOptions.

To understand the difference, consider the following illustration, representing the magnitude of the frequency response of an uncertain system.

The dark blue curve is the nominal response of the system. The light blue curves show various sampled responses of the system. The wcg output of wcgain contains the bounds on the worst-case gain over all frequencies, about 5 dB in the illustration. The frequency at which this gain occurs is the critical frequency, also returned in wcg.

If you set the VaryFrequency option of wcOptions to 'on', then wcgain also calculates the maximum gain at each frequency point, shown by the red curve. wcgain returns these values in info. Bounds. See "Worst-Case Gain at Frequencies in a Range" on page 1-596 for an example. You can also use wcsigmaplot to visualize the worst-case gain as a function of frequency.

Algorithms

Computing the worst-case gain at a particular frequency is equivalent to computing the structured singular value, μ, for some appropriate block structure (μ-analysis).

For uss and genss models, wcgain(usys) and wcgain(usys, \{wmin, wmax\}) use an algorithm that finds the worst-case gain across frequency. This algorithm does not rely on frequency gridding and is not adversely affected by sharp peaks of the μ structured singular value. See "Getting Reliable Estimates of Robustness Margins" for more information.

For ufrd and genfrd models, wcgain computes the μ lower and upper bounds at each frequency point. This computation offers no guarantee between frequency points and can be inaccurate if the uncertainty gives rise to sharp resonances. The syntax wcgain (uss,w), where wis a vector of frequency points, is the same as wcgain(ufrd(uss,w)) and also relies on frequency gridding to compute the worst-case gain.

In general, the algorithm for state-space models is faster and safer than the frequency-gridding approach. In some cases, however, the state-space algorithm requires many μ calculations. In those cases, specifying a frequency grid as a vector w can be faster, provided that the worst-case gain varies smoothly with frequency. Such smooth variation is typical for systems with dynamic uncertainty.

See Also

mussv | robstab|wc0ptions |wcdiskmargin |wcsigmaplot

Topics

"Robust Stability and Worst-Case Gain of Uncertain System"
"Robustness and Worst-Case Analysis"
Introduced before R2006a

wcgainOptions

(Not recommended) Option set for wcsens

Note wcgainOptions is not recommended. Use wcOptions instead. For more information, see "Compatibility Considerations".

Syntax

opt = wcgainOptions
opt = wcgainOptions(Name,Value,...)

Description

opt = wcgain0ptions returns the default option set for a wcsens calculation. Use dot notation to set the values of the options listed in "Input Arguments" on page 1-606.
opt = wcgainOptions(Name,Value, ...) creates an option set with the options specified by one or more Name, Value pair arguments.

Note To create options sets for wcgain, wcdiskmargin, or wcsigmaplot, use wcOptions.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Sensitivity

Determines whether to compute the sensitivity of worst-case responses with respect to each individual uncertain element. This quantity determines how sensitive each system response (such as sensitivity or complementary sensitivity) is to variations in the uncertain parameters.

Sensitivity takes the following values:

- ' on' - wcsens computes the sensitivity of the worst-case responses with respect to each individual uncertain element. This provides an indication of which elements are most problematic.
- 'off' - wcsens does not compute the sensitivity of the worst-case responses with respect to each individual uncertain element.

Default: 'on'

VaryUncertainty

Percentage variation of uncertainty for calculations of sensitivity to uncertainty. The sensitivity estimate uses a finite difference calculation.

Default: 25

LowerBoundOnly

Determines whether only the lower bound is computed.
LowerBoundOnly takes the following values:

- ' on' - wcsens only computes a lower bound on the worst-case response
- 'off' - wcgain computes lower and upper bounds on the worst-case response

Default: 'off'

MaxOverFrequency

Max0verFrequency takes the following values:

- 'on' - wcsens computes the worst-case response function
- 'off' - wcsens computes the worst possible response at each frequency point

Default: 'on'

MaxOverArray

For uncertain model arrays, determines if worst-case response is calculated over entire array or individually for all models in array.

MaxOverArray takes the following values:

- 'on' - wcsens computes the worst-case response over all models
- 'off' - wcsens computes the worst-case response for each model individually

Default: ' on '

AbsTol

Absolute tolerance on computed bound.
The algorithm terminates if UpperBound-LowerBound <= max(AbsTol, Reltol*UpperBound).
Relaxing tolerance speeds up the computation.
Default: 0.02

RelTol

Relative tolerance on computed bound.
The algorithm terminates if UpperBound-LowerBound <= max(AbsTol, Reltol*UpperBound).
Default: 0.05

AbsMax

Absolute threshold for lower bound.

The algorithm terminates if LowerBound >= AbsMax + RelMax * NominalGain.
Specify AbsMax and RelMax to terminate when the lower bound is large enough compared to the nominal gain.

Default: 5

RelMax

Relative threshold for lower bound.
The algorithm terminates if LowerBound >= AbsMax + RelMax * NominalGain.
Specify AbsMax and RelMax to terminate when the lower bound is large enough compared to the nominal gain.

Default: 20
NSearch
Number of lower bound searches at each frequency

Default: 2

Output Arguments

opt
Option set containing the specified options for wcsens.

Examples

Determine Effect of Uncertainty Range on Worst-Case Response

Consider a feedback loop with a first-order plant and a PI controller. The time constant of the plant is uncertain, and the feedback loop accounts for unmodeled dynamic uncertainty. Compute the worstcase gain of the sensitivity function Si at the plant inputs. Use the 'Sensitivity' option of wcgainOptions to compute how sensitive this worst-case gain is to each uncertain element.

```
% Create uncertain system and controller
delta = ultidyn('delta',[1 1]);
tau = ureal('tau',5,'range',[4 6]);
P = tf(1,[tau 1])*(1+0.25*delta);
C = pid(4,4);
opt = wcgainOptions('Sensitivity','on');
wcst = wcsens(P,C,'Si',opt);
```

The Sensitivity field of the Si entry in the output structure includes data that reflects how much the maximum gain of the input sensitivity function changes with each uncertain element.

```
wcst.Si.Sensitivity
ans = struct with fields:
    delta: 44
```


tau: 9

This result tells you that if the uncertainty range of delta increases by 10%, the peak input sensitivity increases by about 4.4%. Similarly, a 10% increase in the uncertainty range of tau causes about a 0.9% increase in the peak input sensitivity.

Compatibility Considerations

wcgainoptions is not recommended
Not recommended starting in R2019a
Use wcOptions to create option sets for wcgain, wcdiskmargin, and other worst-case computation functions.

There are no plans to remove wcgainoptions at this time.

See Also

wcOptions

Introduced in R2011b

wcgainplot

(Not recommended) Graphical worst-case gain analysis

Note wcgainplot is not recommended. Use wcsigmaplot instead.

Syntax

```
wcgainplot(sys)
wcgainplot(sys,w)
wcgainplot(sys,...,options)
```


Description

wcgainplot (sys) plots the nominal and worst-case gains of the uncertain system sys as a function of frequency. For multi-input, multi-output (MIMO) systems, gain refers to the largest singular value of the frequency response matrix. (See sigma for more information about singular values.) The plot includes:

- Nominal - nominal gain of sys
- Worst - the response falling within the uncertainty of sys that has the highest peak gain
- Worst-case gain (lower bound) - the lowest worst-case gain at each frequency
- Worst-case gain (upper bound) - the highest gain within the uncertainty at each frequency
- Sampled Uncertainty - 20 responses randomly sampled from sys
wcgainplot (sys,w) focuses the plot on the frequencies specified by w.
- If w is a cell array $\{w m i n, w m a x\}$, wcgainplot plots the worst-case gains in the range \{wmin, wmax\}.
- If w is an array of frequencies, wcgainplot plots the worst-case gains at each frequency in the array.
wcgainplot(sys, ..., options) uses the options set options to specify additional options for the computation of the worst-case gains. Use wcOptions to create the options set.

Input Arguments

sys

Uncertain dynamic system (Control System Toolbox).

W

Frequencies of worst-case gain plots. Specify frequencies in radians/TimeUnit, where TimeUnit is the time unit of sys.

- If w is a cell array $\{w m i n, w m a x\}$, wcgainplot plots the worst-case gains in the range \{wmin, wmax\}.
- If w is an array of frequencies, wcgainplot plots the worst-case gains at each frequency in the array.
options
Options set specifying additional options for the computation of the worst-case gains. Use wcOptions to create the options set.

Algorithms

wcgainplot uses wcgain to compute the worst-case gains. Use the options argument to wcgainplot to set options for the wcgain algorithm.
wcgainplot uses usample to compute the Sampled Uncertainty curves.

See Also

sigma|usample|wc0ptions |wcgain |wcsigmaplot

Introduced in R2011b

wcmargin

(Not recommended) Worst-case disk stability margins of uncertain feedback loops

Note wcmargin is not recommended. Use wcdiskmargin instead. For more information, see "Compatibility Considerations".

Syntax

```
wcmarg = wcmargin(L)
wcmargi = wcmargin(p,c)
[wcmargi,wcmargo] = wcmargin(p,c)
wcmargi = wcmargin(p,c,opt)
[wcmargi,wcmargo] = wcmargin(p,c,opt)
```


Description

Classical gain and phase margins define the allowable loop-at-a-time variations in the nominal system gain and phase for which the feedback loop retains stability.

An alternative to classical gain and phase margins is the disk margin. The disk margin is the largest region for each channel such that for all gain and phase variations inside the region the nominal closed-loop system is stable. See "Stability Analysis Using Disk Margins" to learn more about the algorithm.

Consider a system with uncertain elements. It is of interest to determine the margin of each individual channel in the presence of uncertainty. These margins are called worst-case margins. Worst-case margin, wcmargin calculates the largest disk margin such that for values of the uncertainty and all gain and phase variations inside the disk, the closed-loop system is stable. The worst-case gain and phase margin bounds are defined based on the balanced sensitivity function. Hence, results from the worst-case margin calculation imply that the closed-loop system is stable for a given uncertainty set and would remain stable in the presence of an additional gain and phase margin variation in the specified input/output channel.
wcmargL = wcmargin(L) calculates the combined worst-case input and output loop-at-a-time gain/ phase margins of the feedback loop consisting of the loop transfer matrix L in negative feedback with an identity matrix. L must be an uncertain system, uss or ufrd object. If L is a uss object, the frequency range and number of points used to calculate wcmargL are chosen automatically. Note that in this case, the worst-case margins at the input and output are equal because an identity matrix is used in feedback. wcmarg is a NU-by-1 structure with the following fields:

Field	Description
GainMargin	Guaranteed bound on worst-case, single-loop gain margin at plant inputs. Loop-at-a-time analysis.
PhaseMargin	Loop-at-a-time worst-case phase margin at plant inputs. Units are degrees.

Field	Description
Frequency	Frequency associated with the worst-case margin (rad/s).
WCUnc	Structure of the worst-case uncertainty values associated with the worst-case disk gain and phase margins for the i-th loop L(i,i).
Sensitivity	Struct with M fields. Field names are names of uncertain elements of P and C. Values of fields are positive numbers, which each entry indicating the local sensitivity of the worst-case margins to all the individual uncertain element's uncertainty ranges. For instance, a value of 50 indicates that if the uncertainty range is enlarged by 8\%, then the worst-case gain should increase by about 4%. If the Sensitivity property of the wcOptions object is ' off ' , the values are NaN.

[wcmargi,wcmargo] = wcmargin (P, C) calculates the combined worst-case input and output loop-at-a-time gain/phase margins of the feedback loop consisting of C in negative feedback with P. C should only be the compensator in the feedback path, without reference channels, if it is a 2 -Dof architecture. That is, if the closed-loop system has a 2-Dof architecture the reference channel of the controller should be eliminated resulting in a 1-Dof architecture as shown in the following figure. Either P or C must be an uncertain system, uss or ufrd, or an uncertain matrix, umat. If P and C are ss/tf/zpk or uss objects, the frequency range and number of points used to calculate wcmargi and wcmargo are chosen automatically.

2-dof architecture

1-dof architecture

Basic Syntax

[wcmargi,wcmargo] = wcmargin(L)
[wcmargi,wcmargo] = wcmargin(P, C)
wcmargi and wcmargo are structures corresponding to the loop-at-a-time worst-case, single-loop gain and phase margin of the channel. For the single-loop transfer matrix L of size N-by- N, wcmargi is a N-by-1 structure. For the case with two input arguments, the plant model P will have N_{Y} outputs and N_{U} inputs and hence the controller C must have N_{U} outputs and N_{Y} inputs. wcmargi is a NU-by-1 structure with the following fields:

Field	Description
GainMargin	Guaranteed bound on worst-case, single-loop gain margin at plant inputs. Loop-at-a-time analysis.
PhaseMargin	Loop-at-a-time worst-case phase margin at plant inputs. Units are degrees.
Frequency	Frequency associated with the worst-case margin (rad/s).
WCUnc	Structure of the worst-case uncertainty values associated with the worst-case disk gain and phase margins for the i-th loop L(i,i).

Field

Sensitivity

Description

Struct with M fields. Field names are names of uncertain elements of P and C. Values of fields are positive numbers, which each entry indicating the local sensitivity of the worst-case margins to all the individual uncertain element's uncertainty ranges. For instance, a value of 50 indicates that if the uncertainty range is enlarged by 8%, then the worst-case gain should increase by about 4%. If the Sensitivity property of the wcOptions object is 'off ' , the values are NaN .
wcmargo is an N-by- 1 structure for the single loop transfer matrix input and wemargo is an N_{Y}-by-1 structure when the plant and controller are input. In both these cases, wcmargo has the same fields as wcmargi. The worst-case bound on the gain and phase margins are calculated based on a balanced sensitivity function.
[wcmargi,wcmargo] = wcmargin(L,opt) and
[wcmargi,wcmargo] = wcmargin(p,c,opt) specify options described in opt. (See wcOptions for more details on the options for wcmargin.)

The sensitivity of the worst-case margin calculations to the individual uncertain elements is selected using the options object opt. To compute sensitivities, create a wcOptions options object, and set the Sensitivity property to 'on'.

Examples

MIMO Loop-at-a-Time Margins

This example is designed to illustrate that loop-at-a-time margins (gain, phase, and/or distance to -1) can be inaccurate measures of multivariable robustness margins. Margins of the individual loops can be very sensitive to small perturbations within other loops.

The nominal closed-loop system considered here is shown as follows.

G and K are 2-by-2 multi-input/multi-output (MIMO) systems, defined as

$$
G:=\frac{1}{s^{2}+\alpha^{2}}\left[\begin{array}{cc}
s-\alpha^{2} & \alpha(s+1) \\
-\alpha(s+1) & s-\alpha^{2}
\end{array}\right], K=I_{2}
$$

Set $\alpha:=10$, construct the nominal model G in state-space form, and compute its frequency response.

```
a = [0 10;-10 0];
b = eye(2);
c = [1 8;-10 1];
d = zeros(2,2);
G = ss(a,b,c,d);
K = [1 -2;0 1];
```

The nominal plant was analyzed previously using the command. Based on experimental data, the gain of the first input channel, $b(1,1)$, is found to vary between 0.97 and 1.06. The following statement generates the updated uncertain model.

```
ingain1 = ureal('ingain1',1,'Range',[0.97 1.06]);
b = [ingain1 0;0 1];
Gunc = ss(a,b,c,d);
```

Because of differences between measured data and the plant model an 8% unmodeled dynamic uncertainty is added to the plant outputs.

```
unmod = ultidyn('unmod',[2 2],'Bound',0.08);
Gmod = (eye(2)+unmod)*Gunc;
Gmodg = ufrd(Gmod,logspace(-1,3,60));
```

You can use the command wcmargin to determine the worst-case gain and phase margins in the presences of the uncertainty.
[wcmi,wcmo] = wcmargin(Gmodg,K);
The worst-case analysis corresponds to maximum allowable disk margin for all possible defined uncertainty ranges. The worst-case single-loop margin analysis performed using wcmargin results in a maximum allowable gain margin variation of 1.31 and phase margin variations of ± 15.6 degs in the second input channel in the presence of the uncertainties 'unmod ' and 'ingain1'. wcmi(1)

```
ans =
    GainMargin: [0.3613 2.7681]
    PhaseMargin: [-50.2745 50.2745]
        Frequency: 0.1000
        Sensitivity: [1x1 struct]
wcmi(2)
ans =
    GainMargin: [0.7585 1.3185]
    PhaseMargin: [-15.6426 15.6426]
        Frequency: 0.1000
        Sensitivity: [1x1 struct]
```

Hence even though the second channel had infinite gain margin and 90 degrees of phase margin, allowing variation in both uncertainties, 'unmod' and 'ingain1' leads to a dramatic reduction in the gain and phase margin.

You can display the sensitivity of the worst-case margin in the second input channel to ' unmod ' and 'ingain1' as follows:

```
wcmi(2).Sensitivity
ans =
    ingain1: 12.1865
        unmod: 290.4557
```

The results indicate that the worst-case margins are not very sensitive to the gain variation in the first input channel, ' ingain1', but very sensitive to the LTI dynamic uncertainty at the output of the plant.

The worst-case single-loop margin at the output results in a maximum allowable gain margin variation of 1.46 and phase margin variation of ± 21.3 degs in the second output channel in the presence of the uncertainties 'unmod' and 'ingain1'.

```
wcmo(1)
ans =
    GainMargin: [0.2521 3.9664]
    PhaseMargin: [-61.6995 61.6995]
        Frequency: 0.1000
        Sensitivity: [1x1 struct]
wcmo(2)
ans =
    GainMargin: [0.6835 1.4632]
    PhaseMargin: [-21.2984 21.2984]
        Frequency: 0.1000
    Sensitivity: [1x1 struct]
```

You can display the sensitivity of the worst-case margin in the second output channel to 'unmod ' and 'ingain1' as follows:

```
wcmo(2).Sensitivity
ans =
    ingain1: 16.3435
        unmod: 392.1320
```

The results are similar to the worst-case margins at the input. However, the worst-case margins at the second output channel are even more sensitive to the LTI dynamic uncertainty than the input channel margins.

Compatibility Considerations

wcmargin is not recommended

Not recommended starting in R2019a
For worst-case stability margins, use the wcdiskmargin command. wcdiskmargin can compute both loop-at-a-time and multiloop margins, while wcmargin only computes loop-at-a-time margins. wcdiskmargin can also compute stability margins with respect to independent, concurrent variations at both the plant inputs and plant outputs. Further, wcdiskmargin includes an optional eccentricity parameter, E, that lets you vary the shape of the uncertainty region used to compute the disk margin. Varying the eccentricity can improve the gain and phase margin estimates.

The following table shows some typical uses of wcmargin and how to update your code to use wcdiskmargin instead.

Not Recommended	Recommended
wcmarg = wcmargin(L)	[wcDM,wcu] = wcdiskmargin(L,'siso')
[wcmargI,wcmarg0] = wcmargin(P,C)	```[wcmargI,wcuI] = wcdiskmargin(C*P,'siso'), for margins at plant input [wcmarg0,wcu0] = wcdiskmargin(P*C, 'siso'), for margins at plant output```

There are no plans to remove wcmargin at this time.

See Also

dmplot|loopsens|robstab|usubs|wcOptions|wcdiskmargin|wcgain

Introduced before R2006a

wcmarginOptions

(Not recommended) Option set for wcmargin

Note wcmarginOptions is not recommended. Use wcOptions instead.

Syntax

```
opt = wcmarginOptions
opt = wcmarginOptions(Name,Value,...)
```


Description

opt = wcmarginOptions returns the default option set for wcmargin.
opt = wcmarginOptions(Name, Value, ...) creates an option set with the options specified by one or more Name, Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Sensitivity

Determines whether to compute the sensitivity of worst-case gain with respect to each individual uncertain element.

Sensitivity takes the following values:

- ' on ' - Sensitivity of the worst-case gain is computed with respect to each individual uncertain element. This provides an indication of which elements are most problematic.
- 'off' - wcmargin does not compute the sensitivity of the worst-case gain with respect to each individual uncertain element.

Default: 'off'

AbsTol

Absolute tolerance on computed worst-case margin bounds.
The algorithm terminates if UpperBound-LowerBound <= max(AbsTol, Reltol*UpperBound)
Default: 0.02

RelTol

Relative tolerance on computed worst-case margin bounds.

The algorithm terminates if UpperBound-LowerBound <= max(AbsTol, Reltol*UpperBound)
Default: 0.05

Output Arguments

opt
Option set containing the specified options for wcmargin.

Examples

Create an options set for wcmargin with an 0.01 and 0.03 as the absolute and relative tolerances on the worst-case margin bounds, respectively.
opt $=$ wcmarginOptions('AbsTol', 0.01,'RelTol', 0.03);
Alternatively, use dot notation to set the values of opt.
opt = wcmarginOptions;
opt.AbsTol = 0.01;
opt.RelTol = 0.03;

See Also

wc0ptions

Introduced in R2011b

wcnorm

Worst-case norm of uncertain matrix

Syntax

```
maxnorm = wcnorm(m)
[maxnorm,wcu] = wcnorm(m)
[maxnorm,wcu] = wcnorm(m,opts)
[maxnorm,wcu,info] = wcnorm(m)
[maxnorm,wcu,info] = wcnorm(m,opts)
```


Description

The norm of an uncertain matrix generally depends on the values of its uncertain elements. Determining the maximum norm over all allowable values of the uncertain elements is referred to as a worst-case norm analysis. The maximum norm is called the worst-case norm.

As with other uncertain-system analysis tools, only bounds on the worst-case norm are computed. The exact value of the worst-case norm is guaranteed to lie between these upper and lower bounds.

Basic syntax

Suppose mat is a umat or a uss with M uncertain elements. The results of
[maxnorm,maxnormunc] = wcnorm(mat)
maxnorm is a structure with the following fields.

Field	Description
LowerBound	Lower bound on worst-case norm, positive scalar.
UpperBound	Upper bound on worst-case norm, positive scalar.

maxnormunc is a structure that includes values of uncertain elements and maximizes the matrix norm. There are M field names, which are the names of uncertain elements of mat. The value of each field is the corresponding value of the uncertain element, such that when jointly combined, lead to the norm value in maxnorm. LowerBound. The following command shows the norm:

```
norm(usubs(mat,maxnormunc))
```


Basic syntax with third output argument

A third output argument provides information about sensitivities of the worst-case norm to the uncertain elements ranges.

```
[maxnorm,maxnormunc,info] = wcnorm(mat)
```

The third output argument info is a structure with the following fields:

Field	Description
Model	Index of model with largest gain (when mat is an array of uncertain matrices)
WorstPerturbati on	Structure of worst-case uncertainty values. The fields of info. WorstPerturbation are the names of the uncertain elements in mat, and each field contains the worst-case value of the corresponding element.
Sensitivity	A struct with M fields. Fieldnames are names of uncertain elements of sys. Field values are positive numbers, each entry indicating the local sensitivity of the worst-case norm in maxnorm. LowerBound to all of the individual uncertain elements' uncertainty ranges. For instance, a value of 25 indicates that if the uncertainty range is increased by 8\%, then the worst-case norm should increase by about 2\%. If the Sensitivity property of the wcOptions object is ' off ', the values are NaN.
BadUncertainVal ues	Same as WorstPerturbation. Included for compatibility with R2016a and earlier.
ArrayIndex	Same as Model. Included for compatibility with R2016a and earlier.

Examples

Worst-Case Norm and Condition Number of an Uncertain Matrix

Construct an uncertain matrix and compute the worst-case norm of the matrix and of its inverse. These computations let you accurately estimate the worst-case, or the largest, value of the condition number of the matrix.

```
a = ureal('a',5,'Range',[4 6]);
b = ureal('b',3,'Range',[2 10]);
c = ureal('c',9,'Range',[8 11]);
d = ureal('d',1,'Range',[0 2]);
M = [a b;c d];
Mi = inv(M);
maxnormM = wcnorm(M)
maxnormM = struct with fields:
    LowerBound: 14.7199
    UpperBound: 14.7227
maxnormMi = wcnorm(Mi)
maxnormMi = struct with fields:
    LowerBound: 2.5963
    UpperBound: 2.5968
```

The condition number of M must be less than the product of the two upper bounds for all values of the uncertain elements of M. Conversely, the condition number of the largest value of M must be at least equal to the condition number of the nominal value of M. Compute these bounds on the worst-case value of the condition number.

```
condUpperBound = maxnormM.UpperBound*maxnormMi.UpperBound;
condLowerBound = cond(M.NominalValue);
[condLowerBound condUpperBound]
ans = 1\times2
    5.0757 38.2312
```

The range between these lower and upper bounds is fairly large. You can get a more accurate estimate. Recall that the condition number of an n-by- m matrix M can be expressed as an optimization, where a free norm-bounded matrix Δ tries to align the gains of M and $\operatorname{inv}(\mathrm{M})$:

$$
\begin{gathered}
K(M)=\max _{\Delta \in C^{m \times m}}\left(\sigma_{\max }\left(M \Delta M^{-1}\right)\right) \\
\sigma_{\max }(\Delta) \leq 1
\end{gathered}
$$

If M is uncertain, then the worst-case condition number involves further maximization over the possible values of M. Therefore, you can compute the worst-case condition number of an uncertain matrix by using a ucomplexm uncertain element and using wcnorm to carry out the maximization.

Create a 2-by-2 ucomplexm element with nominal value 0 .

```
Delta = ucomplexm('Delta',zeros(2,2));
```

The range of values represented by Delta includes 2 -by- 2 matrices with the maximum singular value less than or equal to 1.

Create the expression involving M, Delta, and inv (M).

```
H = M*Delta*Mi;
opt = wCOptions('Mussv0ptions','m5');
[maxKappa,wcu,info] = wcnorm(H,opt);
maxKappa
maxKappa = struct with fields:
    LowerBound: 26.8406
    UpperBound: 38.2349
```

Verify that the values in wcu make the condition number as large as maxKappa. LowerBound.

```
cond(usubs(M,wcu))
ans = 26.9629
```


Algorithms

See wcgain.

See Also

norm | wcOptions | wcgain

Introduced before R2006a

wcdiskmarginplot

Visualize worst-case disk-based stability margins

Syntax

```
wcdiskmarginplot(Lunc)
wcdiskmarginplot(Lunc,E)
wcdiskmarginplot(___,w)
wcdiskmarginplot(___,opts)
```


Description

wcdiskmarginplot(Lunc) plots the nominal and worst-case disk-based gain and phase margins for the SISO or MIMO negative feedback loop feedback (Lunc, eye(N)), where N is the number of inputs and outputs in the uncertain open-loop response Lunc.

For MIMO responses, diskmarginplot uses multiloop disk margins. (For details about disk-based gain and phase margins, see diskmargin.) The plot includes:

- Nominal - Nominal gain and phase margins of Lunc. The disk-based gain margin at each frequency is $\pm G M$, where $G M$ is the value shown in the plot in dB. Similarly, the disk-based phase margin is $\pm P M$ degrees, where $P M$ is the value shown on the plot.
- Worst perturbation - The disk-based gain and phase margins for the worst perturbation within the uncertainty range Lunc.Uncertainty. The worst perturbation corresponds to the wcu output argument of wcdiskmargin. It is the perturbation that yields the smallest disk margin.
- Worst-case margin (lower bound) - Lower bound on the worst-case margins at each frequency. This curve represents the envelope produced by finding the smallest disk margin possible at each frequency, within the uncertainty of Lunc.
- Worst-case margin (upper bound) - Upper bound on the worst-case margins at each frequency.
- Sampled Uncertainty - Margins of responses randomly sampled from Lunc.
wcdiskmarginplot(Lunc,E) plots the disk-based gain and phase margins computed using the eccentricity E to bias the gain variation toward gain increase ($E>0$) or gain decrease ($E<0$). If you have used wc to obtain worst-case disk-based margins with some particular E, you can use this syntax to see the frequency dependence of the margins at that E value. For $\mathrm{E} \neq 0$, the plotted value is $\mathrm{GM}=$ $\min (g \max , 1 / \max (0, g m i n))$. In other words, the plot shows the largest amount of gain change [1/ $G M, G M$] that fits within the disk-based gain margin [gmin, gmax] of the system at the specified E.
wcdiskmarginplot(\qquad ,w) plots the worst-case margins at the frequencies specified by w.
- If w is a cell array of the form \{wmin, wmax\}, then the plot shows the margins at frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then the plot shows the margins at each specified frequency.
wcdiskmarginplot(\qquad , opts) uses specified options to customize plot elements, aspects of the worst-case margin computation, or both. Use diskmarginoptions to specify customizations for the plot. Use wcOptions to specify customizations for the computation. You can use this argument with any of the previous syntaxes.

Examples

Plot Worst-Case Disk Margins of Uncertain System

Plot the worst-case disk-based gain and phase margins of the following system:
$L_{\mathrm{unc}}=\frac{1}{s^{2}+a+10}(1+0.1 \Delta)$,
where a is an uncertain real parameter with a nominal value of 1 and a range of $0.2-2$, and Δ is a gain-bounded dynamic uncertainty.

```
a = ureal('a',1,'Range',[.2 2]);
Delta = ultidyn('Delta',1);
Lunc = tf(1,[1 a 10]) * (1+0.1*Delta);
wcdiskmarginplot(Lunc)
legend('location','SouthEast')
```

Disk-Based Stability Margins

The Worst perturbation curve corresponds to the combination of uncertain elements that yields the smallest disk margin across frequency. This perturbation corresponds to the wcu output of wcdiskmargin.

The Worst-case margin curves show the lower and upper bounds on the worst-case margins at each frequency. For any perturbation within the specified uncertainty range, the disk-based gain or phase margins of the perturbed system lie below the Worst-case margin (upper bound) curve. In other words, this curve is the envelope produced by finding the smallest margins within the uncertainty at each frequency. For this system, the lower and upper bounds are close enough to appear identical on the plot. (See wcdiskmargin for more information about these bounds.)

Focus the plot on the region between 0.5 and $10 \mathrm{rad} / \mathrm{s}$.

```
w = {0.5,10};
wcdiskmarginplot(Lunc,w)
```

Disk-Based Stability Margins

Examine the effect on the worst-case margins of increasing the uncertainty range. To do this without changing the uncertainty specified in Lunc, use the ULevel option of wc0ptions. This option scales the normalized uncertainty by the factor you specify. For example, examine the worst-case margins for a 50% greater uncertainty range.

```
opts = wcOptions('ULevel',1.5);
```

wcdiskmarginplot(Lunc,w,opts)

Disk-Based Stability Margins

In this case, the gain and phase margins for the worst perturbation reach zero, and the worst margin at any frequency is also zero. This result means that extending the uncertainty range this far encompasses some perturbations that drive the closed-loop system feedback (Lunc,1) unstable.

Worst-Case Disk Margin Plot with Customized Appearance

Plot the worst-case disk margins as a function of frequency of a system with the following open-loop response.

```
a = ureal('a',10,'PlusMinus',[-4,4]);
L = tf(25,[1 a a a]);
```

For the plot, use the default preferences specified in your Control System Toolbox preference, except specify the following attributes:

- Frequency units: Hz
- Gain margins on a log scale, in absolute units
- Grid on

```
opts = diskmarginoptions('cstprefs');
```

opts.FreqUnits = 'Hz';
opts.MagScale = 'log';
opts.MagUnits = 'abs';
opts.grid = 'on';
$\mathrm{w}=\{2 * \mathrm{pi} * 1 \mathrm{e}-3,2 * \mathrm{pi} * 10\} ; \% \mathrm{rad} / \mathrm{s}$
wcdiskmarginplot(L,w,opts)

Disk-Based Stability Margins

The plot you obtain might differ in appearance, depending on your current Control System Toolbox preference settings. (See "Toolbox Preferences Editor" (Control System Toolbox).)

Input Arguments

Lunc - Uncertain open-loop response

uss | ufrd | genss | genfrd
Open-loop response, specified as an uncertain model such as a uss, ufrd, genss, or genfrd model. L can be SISO or MIMO, as long as it has the same number of inputs and outputs.
wcdiskmarginplot plots the worst-case disk-based gain and phase margins for the negativefeedback closed-loop system feedback(L,eye(N)).

To plot the worst-case margins of the positive feedback system feedback(L,eye (N) ,+1), use wcdiskmargin(-L).

If L is a frequency-response data model (such as ufrd), then wcdiskmarginplot plots the margins at each frequency represented in the model.

E-Eccentricity

0 (default) | real scalar
Eccentricity of uncertainty region used to compute the stability margins, specified as a real scalar. This parameter biases the uncertainty used to model gain and phase variations toward gain increase or gain decrease.

- The default $\mathrm{E}=0$ uses a balanced model of gain variation in a range [gmin, gmax], with gmin $=$ 1/gmax.
- Positive E uses a model with more gain increase than decrease (gmin $>1 /$ gmax).
- Negative E uses a model with more gain decrease than increase (gmin < 1/gmax).

For more detailed information about how the choice of E affects the margin computation, see "Stability Analysis Using Disk Margins".

When plotting the gain margins of a dynamic system versus frequency, use the default $\mathrm{E}=0$ to get unbiased estimates of gain and phase margins. For $\mathrm{E}=0$, the worst-case disk-based gain margin at each frequency is $\pm G M$, where $G M$ is the value shown in the plot in dB.

If you have used wcdiskmargin to obtain worst-case disk-based margins with some particular E, you can use this syntax to see the frequency dependence of the margins at that E value. For $E \neq 0$, plotted value is $G M=\min (\operatorname{gmax}, 1 / \max (0, g m i n))$. In other words, the plot shows the largest amount of gain change [1/GM, GM] that fits within the disk-based gain margin [gmin, gmax] of the system at the specified E.

w- Frequencies

\{wmin, wmax\} | vector
Frequencies at which to plot stability margins, specified as the cell array $\{w m i n, w m a x\}$ or as a vector of frequency values.

- If w is a cell array of the form $\{w m i n, w m a x\}$, then the plot shows the margins at frequencies between wmin and wmax.
- If w is a vector of frequencies, then the plot shows the margins at each specified frequency. For example, use logspace to generate a row vector with logarithmically spaced frequency values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of L .

opts - Plot and computation options

wcOptions options set|diskmarginplot options set
Plot options, specified as:

- A diskmarginplot options set that you create with diskmarginoptions. Use these options to customize aspects of plot appearance such as title, axis labels, and grids.
- A wCOptions options set. Use these options to customize aspects of the worst-case margins computation, such as scaling the uncertainty to examine the effect of smaller or larger uncertainty range without changing the uncertainty levels in Lunc.
- One of each type of options set, to specify both plot options and computation options. Separate the two options sets by a comma, as in wcdiskmarginplot (Lunc,w, plotops, compopts).

See Also

diskmargin |diskmarginoptions|diskmarginplot|wcOptions|wcdiskmargin

Topics

"Stability Analysis Using Disk Margins"
Introduced in R2020a

wcOptions

Option set for worst-case analysis

Syntax

opts = wcOptions
opts = wcOptions(Name,Value,...)

Description

opts = wCOptions returns the default option set for worst-case analysis commands such as wcgain, wcdiskmargin, or wcsigmaplot.
opts = wcOptions(Name,Value,...) creates an option set with the options specified by one or more Name, Value pair arguments.

Examples

Options for Worst-Case Gain Calculation

Create an options set to calculate the worst-case gain while allowing the uncertain parameters to vary by 20% more than the range specified in the model. Also, configure the options to include the element-by-element sensitivity in the calculation.
opts = wcOptions('ULevel',1.2,'Sensitivity','on');
Alternatively, create a default option set, and use dot notation to set the values of particular options.

```
opts = wcOptions;
opts.ULevel = 1.2;
opts.Sensitivity = 'on';
```

Use opts as an input argument to a worst-case analysis command such as wcgain.

Improve Worst-Case Perturbation

Specifying certain options for the structured-singular-value computation that underlies the worst-gain computation can yield better results in some cases. For example, consider a sample plant and controller.

```
load('wcgExampleData.mat')
```

This command loads gPlant, a MIMO plant with 10 outputs, 8 inputs, and 11 uncertain elements. It also loads Kmu, a state-space controller model. Form a closed-loop system with these models, and examine the worst-case gain.

```
CL = lft(gPlant,Kmu);
[wcg,wcu] = wcgain(CL);
wcg
wcg = struct with fields:
    LowerBound: 10.8742
    UpperBound: 11.2135
    CriticalFrequency: 6.6794
```

There is a large difference between the lower and upper bounds on the worst-case gain. To get a better estimate of the actual worst-case gain, increase the number of restarts that wcgain uses for computing of the worst-case perturbation and associated lower bound. Doing so can result in a tighter lower bound. This option does not affect the upper-bound calculation.

```
opt = wcOptions('MussvOptions','m3');
[wcg,wcu] = wcgain(CL,opt);
wcg
wcg = struct with fields:
    LowerBound: 10.8742
    UpperBound: 11.2135
    CriticalFrequency: 6.6794
```

The difference between the lower bound and upper bound on the worst-case gain is much smaller. The critical frequency is different as well.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: 'ULevel','1.5','Sensitivity','on'

ULevel - Uncertainty level

1 (default) | positive scalar
Uncertainty level to use for the worst-case computation, specified as the comma-separated pair consisting of ' ULevel' and a positive scalar value. This option scales the normalized uncertainty by the factor you specify. Such scaling lets you examine the effect of smaller or larger uncertainty range without changing the uncertainty levels in your model. For instance, to see the effect of doubling the ranges of all uncertain parameters, set 'ULevel' to 2 . To see the effect of shrinking the ranges, set ' ULevel ' to 0.5 . The default value, 1 , corresponds to the amount of uncertainty specified in the model.

Display - Display progress of computation and summary report

'off' (default) |'on'
Display progress and summary report of the worst-case gain computation, specified as the commaseparated pair consisting of 'Display ' and one of these values:

- 'off' - Do not display progress and report.
- ' on ' - Display progress and report. When you use this option, a progress indicator and summary of results is displayed in the command window, similar to the following.
The worst-case gain is at most 11.2.
-- There is a bad perturbation amounting to 100% of the modeled uncertainty.
-- This perturbation causes a gain of 9.03 at the frequency 5.5 rad/seconds.
This setting overrides the silent ('s') option in the Mussv0ptions option.

VaryFrequency - Compute worst-case gain as function of frequency 'off' (default)|'on'

Return worst-case gain as a function of frequency, specified as the comma-separated pair consisting of 'VaryFrequency' and one of these values:

- 'off' - Only return worst-case gains at frequencies where the worst values occur.
- ' on ' - Compute worst-case gains over a frequency grid suitable for plotting. The frequency grid is chosen automatically based on system dynamics. This calculation is done in addition to identifying the critical frequency where the gain peaks. Access the frequency values and corresponding gains in the info output of wcgain or other worst-case analysis command.

This option is ignored for ufrd and genfrd models.

Sensitivity - Calculate sensitivity of worst-case gains

'off' (default)|'on'
Calculate the sensitivity of the worst-case gain to each uncertain element in the model, specified as the comma-separated pair consisting of 'Sensitivity' and either 'off' or 'on'.

Each uncertain element contributes to the overall worst case in a coupled manner. Set this option to ' on ' to estimate the sensitivity of the margin to each element. This element-by-element sensitivity provides an indication of which elements are most problematic. Access the sensitivity estimates in the info output of the worst-case computation command.

SensitivityPercent - Percentage variation of uncertainty for computing sensitivity
 25 (default) | positive scalar value

Percentage variation of uncertainty level for computing sensitivity, specified as the comma-separated pair consisting of 'SensitivityPercent' and a positive scalar value. The sensitivity to a particular uncertain element is estimated using a finite difference calculation. This calculation increases the (normalized) amount of uncertainty on this element by some percentage, computes the resulting worst-case gain, and computes the ratio of percent variations. This option specifies the percentage increase in uncertainty level applied to each element. The default value is 25%.

MussvOptions - Options for mussv calculation

' ' (default) | character vector
Options for the mussv calculation that underlies the worst-case calculations, specified as the commaseparated pair consisting of 'Mussv0ptions' and a character vector such as 'sm3' or 'ad '.

Some Mussv0ptions values that are especially useful for improving worst-case calculations include:

- ' a ' - Force the use of LMI optimization to compute the μ upper bound, which yields better results in general but can be expensive when some ureal elements are repeated multiple times.
- 'mN ' - Use multiple restarts when computing the μ lower bound, which corresponds to the lower bound for the worst-case gain. This option can reduce the gap between the lower bound and upper bound on the worst-case gains. N is the number of restarts. For example, setting 'Mussv0ptions' to 'm3' causes three restarts. See "Improve Worst-Case Perturbation" on page 1-632 for an example.

See mussv for the remaining available options and corresponding characters. The default, ' ' , uses the default options for mussv.

Output Arguments

opts - Options for worst-case calculations

wcOptions object
Options for worst-case calculations, returned as a wcOptions object. Use the options as an input argument to any of the worst-case analysis functions, such as wcgain and wcsigmaplot. For example:
[wcgain,wcu,info] = wcgain(usys,opts)

See Also

wcdiskmargin|wcgain|wcsigmaplot

Topics

"Robustness and Worst-Case Analysis"

Introduced in R2016b

wcsens

(Not recommended) Calculate worst-case sensitivity and complementary sensitivity functions of plantcontroller feedback loop

Note wcsens is not recommended. Use wcgain instead. For more information, see "Compatibility Considerations".

Syntax

```
wcst = wcsens(L)
wcst = wcsens(L,type)
wcst = wcsens(L,opt)
wcst = wcsens(L,type,scaling)
wcst = wcsens(L,type,scaling,opt)
wcst = wcsens(P,C)
wcst = wcsens(P,C,type)
wcst = wcsens(P,C,opt)
wcst = wcsens(P,C,type, scaling)
wcst = wcsens(P,C,type,scaling,opt)
```


Description

The sensitivity function, $S=(I+L)^{-1}$, and the complementary sensitivity function, $T=L(I+L)^{-1}$, where L is the loop gain matrix associated with the input, $C P$, or output, $P C$, are two transfer functions related to the robustness and performance of the closed-loop system. The multivariable closed-loop interconnection structure, shown below, defines the input/output sensitivity, complementary sensitivity and loop transfer functions.

The following table gives the values of the input and output sensitivity functions for this control structure.

Description	Equation
Input sensitivity S_{i} (closed-loop transfer function from d_{1} to e_{1})	$S_{i}=(I+C P)^{-1}$
Input complementary sensitivity T_{i} (closed-loop transfer function from d_{1} to e_{2})	$T_{i}=C P(I+C P)^{-1}$
Output sensitivity S_{o} (closed-loop transfer function from d_{2} to e_{2})	$S_{o}=(I+P C)^{-1}$
Output complementary sensitivity T_{o} (closed-loop transfer function from d_{2} to e_{4})	$T_{o}=P C(I+P C)^{-1}$
Input loop transfer function L_{i}	$L_{i}=C P$
Output loop transfer function L_{o}	$L_{o}=P C$

wcst $=$ wcsens (L) calculates the worst-case sensitivity and complementary sensitivity functions for the loop transfer matrix L in feedback in negative feedback with an identity matrix. If L is a uss object, the frequency range and number of points are chosen automatically.
wcst $=$ wcsens (P, C) calculates the worst-case sensitivity and complementary sensitivity functions for the feedback loop C in negative feedback with P. C should only be the compensator in the feedback path, not any reference channels, if it is a 2-dof architecture (see loopsens). If P and C are ss/tf/zpk or uss objects, the frequency range and number of points are chosen automatically. wcst is a structure with the following substructures:

Fields of wcst

Field	Description
Si	Worst-case input-to-plant sensitivity function
Ti	Worst-case input-to-plant complementary sensitivity function
So	Worst-case output-to-plant sensitivity function
To	Worst-case output-to-plant complementary sensitivity function
PSi	Worst-case plant times input-to-plant sensitivity function
CSo	Worst-case compensator times output-to-plant sensitivity function
Stable	1 if nominal closed loop is stable, 0 otherwise. NaN for frd/ufrd objects.

Each sensitivity substructure is a structures with five fields MaximumGain, BadUncertainValues, System, BadSystem, Sensitivity derived from the outputs of wcgain.

Fields of Si, So, Ti, To, PSi, CSo

Field	Description
MaximumGain	struct with fields LowerBound, UpperBound and CriticalFrequency. LowerBound and UpperBound are bounds on the unweighted maximum gain of the uncertain sensitivity function. CriticalFrequency is the frequency at which the maximum gain occurs.
BadUncertainValues	Struct, containing values of uncertain elements which maximize the sensitivity gain. There are M fluidness, which are the names of uncertain elements of sensitivity function. The value of each field is the corresponding value of the uncertain element, such that when jointly combined, lead to the gain value in MaximumGain. LowerBound.
System	Uncertain sensitivity function (ufrd or uss).
BadSystem	Worst-case system based on the uncertain object values in BadUncertainValues. BadSystem is defined as BadSystem=usubs (System, BadUncertainValues).
Sensitivity	Struct with M fields, fieldnames are names of uncertain elements of system. Values of fields are positive numbers, each entry indicating the local sensitivity of the maximum gain to all of the individual uncertain elements uncertainty ranges. For instance, a value of 50 indicates that if the uncertainty range is enlarged by 8\%, then the maximum gain should increase by about 4\%. If the ' 'sensitivity ' property of the wcgain0ptions object is ' off ' , the values are NaN.

wcst $=$ wcsens(L,type) and wcst $=$ wcsens (P, C, type) allow selection of individual Sensitivity and Complementary Sensitivity functions, type, as
'Si','Ti','So','To','PSi','CSo' corresponding to the sensitivity and complementary sensitivity functions. Setting type to 'S' or ' T ' selects all sensitivity functions
('Si', 'So','PSi', 'CSo') or all complementary sensitivity functions ('Ti', 'To'). Similarly, setting type to 'Input' or 'Output' selects all input Sensitivity functions ('Si' ', Ti', 'PSi') or all output sensitivity functions ('So, 'To', 'CSo'). 'All' selects all six Sensitivity functions for analysis (default). type may also be a cell array containing multiple function types, such as \{'Si','To'\}.
wcst = wcsens(L,type,scaling) and wcst = wcsens(P,C,type,scaling) add a scaling to the worst-case sensitivity analysis. scaling is one of the following:

- 'Absolute' (default) - Calculates bounds on the maximum gain of the uncertain sensitivity function.
- 'Relative' - Finds bounds on the maximum relative gain of the uncertain sensitivity function. That is, the maximum relative gain is the largest ratio of the worst-case gain and the nominal gain evaluated at each frequency point in the analysis.
- LTI model (ss, tf, zpk, or frd) - Calculates bounds on the maximum scaled gain of the uncertain sensitivity function. The input/output dimensions of the LTI model must be either 1-by-1, or compatible with P and C .

You can also combine type and scaling in a cell array, e.g.

```
wcst = wcsens(P,C,{'Ti','So'},'Abs','Si','Rel','PSi',wt)
```

wcst = wcsens(P,C,opt) orwcst = wcsens(P,C,type,scaling,opt) specifies options for the worst-case gain calculation as defined by opt. (See wcgainOptions for more details on the options for wcsens.)

The sensitivity of the worst-case sensitivity calculations to the individual uncertain components can be determined using the options object opt. To compute the sensitivities to the individual uncertain components, create a wcgainOptions options object, and set the Sensitivity property to ' on '.

```
opt = wcgainOptions('Sensitivity','on');
wcst = wcsens(P,C,opt)
```


Examples

The following constructs a feedback loop with a first order plant and a proportional-integral controller. The time constant is uncertain and the model also includes an multiplicative uncertainty. The nominal (input) sensitivity function has a peak of 1.09 at omega $=1.55 \mathrm{rad} / \mathrm{sec}$. Since the plant and controller are single-input / single-output, the input/output sensitivity functions are the same.

```
delta = ultidyn('delta',[1 1]);
tau = ureal('tau',5,'range',[4 6]);
P = tf(1,[tau 1])*(1+0.25*delta);
C=tf([4 4],[1 0]);
looptransfer = loopsens(P,C);
Snom = looptransfer.Si.NominalValue;
norm(Snom,inf)
ans =
    1.0864
```

wcsens is then used to compute the worst-case sensitivity function as the uncertainty ranges over its possible values. More information about the fields in wcst. Si can be found in the wcgain help. The badsystem field of wcst. Si contains the worst case sensitivity function. This worst case sensitivity has a peak of 1.52 at omega $=1.02 \mathrm{rad} / \mathrm{sec}$. The maxgainunc field of wcst. Si contains the perturbation that corresponds to this worst case sensitivity function.

```
wcst = wcsens(P,C)
wcst =
    Si: [1x1 struct]
    Ti: [1x1 struct]
    So: [1x1 struct]
    To: [1x1 struct]
    PSi: [1x1 struct]
    CSo: [1x1 struct]
    Stable: 1
Swc = wcst.Si.BadSystem;
omega = logspace(-1,1,50);
bodemag(Snom,'-',Swc,'-.',omega);
legend('Nominal Sensitivity','Worst-Case Sensitivity',...
    'Location','SouthEast')
norm(SwC,inf)
ans =
    1.5075
```

For multi-input/multi-output systems the various input/output sensitivity functions will, in general, be different.

Compatibility Considerations

wcsens is not recommended

Not recommended starting in R2019a
Use of wcsens is not recommended. Instead, form the transfer function you want to analyze, and use wcgain to obtain the worst-case sensitivity. This approach has improved numeric stability and more reliable results relative to wcsens. To form the transfer function, assuming the following control structure, refer to the following diagram and table.

The following table gives the values of the input and output sensitivity functions for this control structure.

Description	Equation
Input sensitivity S_{i} (closed-loop transfer function from d_{1} to e_{1})	$S_{i}=(I+C P)^{-1}$
Input complementary sensitivity T_{i} (closed-loop transfer function from d_{1} to e_{2})	$T_{i}=C P(I+C P)^{-1}$
Output sensitivity S_{o} (closed-loop transfer function from d_{2} to e_{2})	$S_{o}=(I+P C)^{-1}$
Output complementary sensitivity T_{o} (closed-loop transfer function from d_{2} to e_{4})	$T_{o}=P C(I+P C)^{-1}$
Input loop transfer function L_{i}	$L_{i}=C P$
Output loop transfer function L_{o}	$L_{o}=P C$

For an example, see "Worst-Case Sensitivity Functions of Feedback Loops".
There are no plans to remove wcsens at this time.

References

J. Shin, G.J. Balas, and A.K. Packard, "Worst case analysis of the X-38 crew return vehicle flight control system," AIAA Journal of Guidance, Dynamics and Control, vol. 24, no. 2, March-April 2001, pp. 261-269.

See Also

loopsens| robstab|usubs|wcdiskmargin|wcgain
Introduced before R2006a

wcsigma

(Not recommended) Plot worst-case gain of uncertain system

Note wCsigma is not recommended. Use wCsigmaplot instead.

Syntax

```
wcsigma(usys)
wcsigma(usys,w)
wcsigma(
```

\qquad

``` ,opts)
```


Description

wcsigma(usys) plots the nominal and worst-case gains of the uncertain system usys as a function of frequency. For multi-input, multi-output (MIMO) systems, gain refers to the largest singular value of the frequency response matrix. (See sigma for more information about singular values.) The plot includes:

- Nominal - Nominal gain of usys.
- Worst perturbation - The response falling within the uncertainty of usys that has the highest peak gain. This curve corresponds to the wcu output argument of wcgain.
- Worst-case gain (lower bound) - The lowest possible worst-case gain at each frequency.
- Worst-case gain (upper bound) - The highest possible gain within the uncertainty at each frequency. This curve represents the envelope produced by finding the highest possible gain at each frequency.
- Sampled Uncertainty - Responses randomly sampled from usys.
wcsigma(usys,w) focuses the plot on the frequencies specified by w .
- If w is a cell array of the form $\{w m i n, w m a x\}$, then wcsigma plots the worst-case gains in the range \{wmin, wmax\}.
- If w is an array of frequencies, then wcsigma plots the worst-case gains at each frequency in the array.
wcsigma(\qquad ,opts) specifies additional options for the computation. Use wcOptions to create opts.

Examples

Plot Worst-Case Gain of Uncertain System

Plot the worst-case gain of the following system:

$$
\text { sys }=\frac{s^{2}+3 s}{s^{2}+2 s+a}
$$

The uncertain parameter $a=2 \pm 1$.

```
a = ureal('a',2);
usys = tf([1 3 0],[1 2 a]);
wcsigma(usys)
```


The Worst perturbation curve identifies the single response within the uncertainty that yields the highest gain at any frequency. This perturbation corresponds to the wcu output of wcgain.

The Worst-case gain curves show the lower and upper bounds on the worst-case gain at each frequency. For any perturbation within the specified uncertainty range, the principal gains (singular values) of the perturbed system lie below the Worst-case gain (upper bound) curve. In other words, this curve is the envelope produced by finding the highest gain within the uncertainty at each frequency. For this system, the lower and upper bounds are close enough to appear identical on the plot. (See wcgain for more information about these bounds.)

Focus the plot on the region between 0.1 and $10 \mathrm{rad} / \mathrm{s}$.

```
w = {0.1 10};
wcsigma(usys,w)
```


Examine the effect on the worst-case response of increasing the uncertainty range. To do this without changing the uncertainty specified in usys, use the ULevel option of wc0ptions. This option scales the normalized uncertainty by the factor you specify. For example, examine the worst-case response a 50\% greater uncertainty range.

```
opts = wcOptions('ULevel',1.5);
wcsigma(usys,w,opts)
```


The plot shows that increasing the uncertainty range substantially increases the worst-case gain at low frequencies.

Input Arguments

usys - Dynamic system with uncertainty

uss | ufrd | genss | genfrd
Dynamic system with uncertainty, specified as a uss, ufrd, genss, or genfrd model that contains uncertain elements.

For genss or genfrd models, wcsigma uses the current value of any tunable blocks and folds them into the known (not uncertain) part of the model.

w- Frequencies

\{wmin, wmax\} | vector
Frequencies at which to plot worst-case gains, specified as the cell array $\{w m i n, w m a x\}$ or as a vector of frequency values.

- If w is a cell array of the form $\{w m i n, w m a x\}$, then the function plots the worst-case gains at frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then the function plots the worst-case gains at each specified frequency. For example, use logspace to generate a row vector with logarithmically spaced frequency values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the model.

opts - Options for worst-case gain computation

wcOptions object
Options for worst-case computation, specified as an object you create with wc0ptions. Setting certain options for mussv can improve the results of the worst-case calculation. See wcOptions for more information.

Example: wc0ptions('ULevel', 2, 'Mussv0ptions', 'm3')

Algorithms

wcsigma uses wcgain to compute the worst-case gains. Use the opts argument to set options for the wcgain algorithm.
wcsigma uses usample to compute the Sampled Uncertainty curves.

Compatibility Considerations

wcsigma is not recommended

Not recommended starting in R2020a
Beginning in R2020a, wcsigma is not recommended. Use wcsigmaplot instead.

See Also

sigma|uss |wcOptions |wcgain |wcsigmaplot
Topics
"Robustness and Worst-Case Analysis"
Introduced in R2016b

wcsigmaplot

Plot worst-case gain of uncertain system

Syntax

```
wcsigmaplot(usys)
wcsigmaplot(usys,w)
wcsigmaplot(
```

\qquad

``` ,opts)
```


Description

wcsigmaplot (usys) plots the nominal and worst-case gains of the uncertain system usys as a function of frequency. For multi-input, multi-output (MIMO) systems, gain refers to the largest singular value of the frequency response matrix. (See sigma for more information about singular values.) The plot includes:

- Nominal - Nominal gain of usys.
- Worst perturbation - The response falling within the uncertainty of usys that has the highest peak gain. This curve corresponds to the wcu output argument of wcgain.
- Worst-case gain (lower bound) - The lowest possible worst-case gain at each frequency.
- Worst-case gain (upper bound) - The highest possible gain within the uncertainty at each frequency. This curve represents the envelope produced by finding the highest possible gain at each frequency.
- Sampled Uncertainty - Responses randomly sampled from usys.
wcsigmaplot(usys,w) focuses the plot on the frequencies specified by w.
- If w is a cell array of the form $\{w m i n, w m a x\}$, then wcsigmaplot plots the worst-case gains in the range $\{w m i n, w m a x\}$.
- If w is an array of frequencies, then wcsigmaplot plots the worst-case gains at each frequency in the array.
wcsigmaplot(\qquad , opts) specifies additional options for the computation. Use wcOptions to create opts.

Examples

Plot Worst-Case Gain of Uncertain System

Plot the worst-case gain of the following system:

$$
\text { sys }=\frac{s^{2}+3 s}{s^{2}+2 s+a} .
$$

The uncertain parameter $a=2 \pm 1$.
a = ureal('a',2);
usys = tf([1 3 0],[1 2 a]);
wcsigmaplot(usys)

The Worst perturbation curve identifies the single response within the uncertainty that yields the highest gain at any frequency. This perturbation corresponds to the wcu output of wcgain.

The Worst-case gain curves show the lower and upper bounds on the worst-case gain at each frequency. For any perturbation within the specified uncertainty range, the principal gains (singular values) of the perturbed system lie below the Worst-case gain (upper bound) curve. In other words, this curve is the envelope produced by finding the highest gain within the uncertainty at each frequency. For this system, the lower and upper bounds are close enough to appear identical on the plot. (See wcgain for more information about these bounds.)

Focus the plot on the region between 0.1 and $10 \mathrm{rad} / \mathrm{s}$.

```
w = {0.1 10};
wcsigmaplot(usys,w)
```


Singular Values

Examine the effect on the worst-case response of increasing the uncertainty range. To do this without changing the uncertainty specified in usys, use the ULevel option of wcOptions. This option scales the normalized uncertainty by the factor you specify. For example, examine the worst-case response a 50% greater uncertainty range.

```
opts = wcOptions('ULevel',1.5);
wcsigmaplot(usys,w,opts)
```


The plot shows that increasing the uncertainty range substantially increases the worst-case gain at low frequencies.

Input Arguments

usys - Dynamic system with uncertainty
uss | ufrd | genss | genfrd
Dynamic system with uncertainty, specified as a uss, ufrd, genss, or genfrd model that contains uncertain elements.

For genss or genfrd models, wcsigmaplot uses the current value of any tunable blocks and folds them into the known (not uncertain) part of the model.

w - Frequencies

\{wmin, wmax\} | vector
Frequencies at which to plot worst-case gains, specified as the cell array \{wmin,wmax\} or as a vector of frequency values.

- If w is a cell array of the form $\{w m i n, w m a x\}$, then the function plots the worst-case gains at frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then the function plots the worst-case gains at each specified frequency. For example, use logspace to generate a row vector with logarithmically spaced frequency values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the model.

opts - Options for worst-case gain computation

wcOptions object
Options for worst-case computation, specified as an object you create with wcOptions. Setting certain options for mussv can improve the results of the worst-case calculation. See wcOptions for more information.
Example: wcOptions('ULevel',2,'Mussv0ptions','m3')

Algorithms

wcsigmaplot uses wcgain to compute the worst-case gains. Use the opts argument to set options for the wcgain algorithm.
wcsigmaplot uses usample to compute the Sampled Uncertainty curves.

See Also

sigma |uss |wcOptions |wcgain

Topics

"Robustness and Worst-Case Analysis"

Introduced in R2016b

Blocks

MultiPlot Graph

Plot multiple signals

MultiPlot Graph

Description

The MultiPlot Graph block displays signals in a MATLAB figure.
If the input signal is a vector, then each component of the vector is plotted in a separate axes. Lines are added to the axes in subsequent simulations. The most recent data is plotted in red. Older plots cycle through seven different colors. The block acts as a "hold-on, subplotter."

There are two buttons in the toolbar menu. The eraser button clears the data from all axes. The export button saves all the visible plot data to the MATLAB workspace in a variable named by the dialog box entry Variable for Export to Workspace. The format is a struct array, following the behavior of a To Workspace block, using the "Structure, With Time" save format.

The MultiPlot Graph block can be used in conjunction with the Uncertain State Space block to visualize Monte Carlo and worst-case simulation time responses.

Parameters

t-min, t-max

The parameter entries t -min and t -max are the minimum and maximum x -axis limits. t -min and t -max may be vectors corresponding to each subplot.

y-min, y-max

The parameter entries y-min and y-max are the minimum and maximum y-axis limits and similarly may be vector quantities.

Sample time

Sample time corresponds to the sample time at which to collect points.

Title

Specifies the title of the multiplot figure.

Variable for Export to Workspace

Variable name of the MATLAB object to contain all the visible plot data exported to the MATLAB workspace. The format is a struct array, following the behavior of a To Workspace block, using the "Structure, With Time" save format.

See Also

Uncertain State Space

Topics

"Simulate Uncertain Model at Sampled Parameter Values"
"Vary Uncertain Values Across Multiple Uncertain Blocks"
Introduced in R2007a

Uncertain State Space

Specify uncertain system in Simulink

```
ss(ureal( \(\left.\left.{ }^{\prime} a^{\prime},-5\right), 5,1,1\right)\)
Uncertain State Space
```


Description

The Uncertain State Space block lets you model parametric and dynamic uncertainty in Simulink. The block accepts uncertain state space (uss) models or any model that can be converted to uss, such as umat, ureal, umargin, and ultidyn objects.

Parameters

Uncertain system variable (uss)

Linear state-space model with uncertainty (uss object). Specify an uss object using one of the following:

- Function or expression that evaluates to an uss object. For example:
- ss(ureal('a',-5),5,1,1)
- wt*input unc, where input unc is an ultidyn object and wt and input unc are defined in the MATLAB workspace.
- Variable name, defined in the MATLAB workspace. For example, unc_sys, where you define unc_sys = ss (ureal ('a',-5), 5, 1, 1) in the workspace. This returns an uss object.
- Model type that can be converted to an uss object. For example:
- LTI models (tf, zpk and ss)
- Uncertain matrix (umat)
- Uncertain real parameters (ureal)
- Uncertain dynamics (ultidyn).

When the block is in a model with synchronous state control (see the State Control block), you must specify a discrete-time model.

Uncertainty value (struct or [] to use nominal value)

Values of uncertain variables. The uss object that you enter in the Uncertain system variable (uss) field depends on uncertain variables (ureal or ultidyn object). Use this field to specify the values of these uncertain variables to use for simulation or linearization. Specify the value as one of the following:

Value	Description
[]	Use nominal values.

Value	Description
Structure	Use user-defined values. For example, struct (' a ' ' 1) specifies a value of 1 for the uncertain variable a. Use ufind and usample to generate randomized values of uncertain variables for Monte Carlo simulation. For more information, see "Simulate Uncertain Model at Sampled Parameter Values" and "Vary Uncertain Values Across Multiple Uncertain Blocks" in the Robust Control Toolbox User's Guide.

Initial states (nominal dynamics)

If the nominal value of the uncertain state variable, unc_sys. NominalValue where unc_sys is the uncertain system variable specified in the Uncertain system variable field, has states, specify the initial condition for these states. The value defaults to zero.

Initial states (uncertain dynamics)

If the uncertain system contains some dynamic uncertainty (ultidyn), specify the initial state of these dynamics. The value defaults to zero.

See Also

Blocks

MultiPlot Graph

Functions

ufind | ulinearize |ultidyn|umargin|umat|ureal|usample|uss

Topics

"Simulate Uncertain Model at Sampled Parameter Values"
"Vary Uncertain Values Across Multiple Uncertain Blocks"
"Simulate Uncertainty Effects"
"Compute Uncertain State-Space Models from Simulink Models"
"Robustness Analysis in Simulink"
"Linearization of Simulink Models with Uncertainty"

Introduced in R2009b

USS System

Import uncertain systems into Simulink

Compatibility

Note USS System block is not recommended. Use Uncertain State Space block instead.

Description

The USS System block accepts USS and UMAT containing ureal and ultidyn uncertain objects, as well as ureal and ultidyn objects. An instance of the uncertain system is used in the simulation or linearization. Internally, USS models are converted to their state space equivalent for evaluation.

Parameters

USS system variable

The uncertain object (USS, UMAT, ureal, or ultidyn) is entered in the USS system variable.

Initial states (nominal dynamics)

If the nominal value for the USS system variable has states, then the initial condition for these states is entered in Initial states (nominal dynamics).

Uncertainty value

The values for the uncertain elements are controlled by the Uncertainty value menu. If Nominal is selected, then the nominal value of the uncertain object is used. If you select User defined, then you must enter a MATLAB structure in the User-defined uncertainty (struct) dialog box. The field names of the structure should correspond to the names of the uncertain atoms within the USS system variable, while the values of the fields are the values used for the uncertain objects (using the command usubs). If some of these values are SS objects, then these states are referred to as uncertainty states.

The order of the uncertainty states is determined by the order of atoms in the Uncertainty property of the USS system variable. The state dimension is determined by the actual data in the User-defined uncertainty structure. Any extra fields in the User-defined uncertainty structure are ignored.

User-defined uncertainty (struc)

If User defined is selected from the Uncertainty value pop-up menu, then the structure data entered in User-defined uncertainty (struct) must contain fields corresponding to every uncertain atom of the USS system variable. Extra fields are ignored. usimsamp generates a random instance of each atom in a Simulink model. It returns a structure, suitable for entry in User defined uncertainty (struct).

Initial states (uncertain dynamics)

The initial condition for the uncertainty states is entered in Initial states (uncertain dynamics).

Introduced in R2007a

[^0]: A batch run of a serial of different reduced order models can be generated by specifying order = $x: y$, or a vector of positive integers. By default, all the anti-stable part of a system is kept, because from control stability point of view, getting rid of unstable state(s) is dangerous to model a system.
 'MaxError' can be specified in the same fashion as an alternative for 'Order'. In this case, reduced order will be determined when the sum of the tails of the Hankel singular values reaches the 'MaxError'.

[^1]: A batch run of a serial of different reduced order models can be generated by specifying order = $x: y$, or a vector of integers. By default, all the anti-stable part of a physical system is kept, because from control stability point of view, getting rid of unstable state(s) is dangerous to model a system.
 'MaxError' can be specified in the same fashion as an alternative for ' ORDER ' after an 'ErrorType' is selected. In this case, reduced order will be determined when the sum of the tails of the Hankel SV's reaches the 'MaxError'.

